@ / Collaborative distributed version control @ KIT documentation

Collaborative distributed version control and
troubleshooting @ KIT

This material was originally developed by CodeRefinery. The original material is visible here and
here. Pull requests and fixes are welcome!

The content of this workshop can be roughly divided in two parts.

Effective collaborative software development
How can we share work on a repository of files with others on the internet?

« Share an archive of the directory using email or using some file sharing service: This
would lead to many back and forth emails and would be difficult keep all copies
synchronized.

« One person’s repository on the web: allows one person to keep track of more projects,
gain visibility, feedback, and recognition.

« Common repository for a group: everyone can directly update the same repository. Good
for small groups.

« Forks or copies with different owners: anyone can suggest changes, even without
advance permission. Maintainers approve what they agree with.

Being able to share more easily (going down the above list) is transformative, because it allows
projects to scale to a new level. This can’t be done without proper tools.

We will discuss the centralized as well as the forking workflows.

During the workshop, you will collaborate in small groups using the same forge.

Some of the details might not apply to the forge you are using, please focus on the general
ideas.

Fixing problems using Git, and fixing Git problems

Version Control has been sometimes described as “an unlimited undo button”, that offers
important ways to tackle problems and gain insight during development (typically, software
development), by inspecting the history and the state of all the files involved.

Of course, using a new tool can introduce additional complexity on top of an already
complex workflow. Being in control of the tool can guarantee a much productive and stress-
free experience, especially when collaborating with other people.

https://coderefinery.org/
https://coderefinery.github.io/git-intermediate/
https://coderefinery.github.io/git-intro/

Expected learning outcomes

O Objectives

1. Be able to collaborate with others on remote repositories hosted on Git Forges (e.g.,
GitHub, GitLab and other similar services);

2. Be able to use git tools to diagnose and fix problems in code or documents (the
content of the repository);

3. Be able to fix common issues encountered when deviating from the simplest workflow
(pull - add - commit - push);

4. Bonus point: fix issues in this repository

£+ Prerequisites

1. Basic understanding of Git.
2. You need an account on a “Forge’, e.g.
« github.com
« gitlab.com
« gitlab.kit.edu
« codeberg.org

Quick recap on Git Basics: Commits and Branches

The first and most basic task to do in Git is record changes using commits.
We will record changes in two ways:

« on a new branch (which supports multiple lines of work at once)
« directly on the “main” branch (which happens to be the default branch here).

O Objectives

« Record new changes to our own copy of the project.
« Understand adding changes in two separate branches.
« See how to compare different versions.

Glossary

« commit: Snapshot of the project at a certain point in time, gets a unique identifier (called
a hash, e.g. c7feesbfc718bena525847fc7ac237f470add76e). Usually you can be lazy and use
only the first 4 characters wherever a commit hash is needed.

« branch: Independent development line. The main development line is often called main .

« tag: A pointer to one commit, to be able to refer to it later. Like a “commemorative plaque”
that you attach to a particular commit (e.g. phd-printed Or paper-submitted).

https://en.wikipedia.org/wiki/Forge_(software)
https://github.com/
https://gitlab.com/
https://gitlab.kit.edu/
https://codeberg.org/
https://coderefinery.github.io/git-intro/reference/#term-commit
https://coderefinery.github.io/git-intro/reference/#term-hash
https://coderefinery.github.io/git-intro/reference/#term-branch
https://coderefinery.github.io/git-intro/reference/#term-tag

« repository: A copy of the project, contains all data and history (commits, branches, tags).

« forge: a web-based collaborative software platform for both developing and sharing code (from
wikipedia), e.g. GitHub or GitLab

« cloning: Copying the whole repository - the first time, e.g. downloading it on your
computer. It is not necessary to download each file one by one.

« forking: Cloning a repository (which is typically not yours) on a forge - your copy (fork)
stays on the forge and you can make changes to your copy.

Merging

sunglasses branch

e

main branch
A

rd

N

graduation_hat branch

What if two people, at the same time, make two different changes? Git can merge them together
easily. Image created using https://gopherize.me/ (inspiration).

Exercise: Practice creating commits and branches

£¥ How to prepare the repository

Fork on github.com Clone and push to new repository

1. Go to the repository view on GitHub https:/github.com/coderefinery/recipe-book
2. First, on GitHub, click the button that says “Fork”. It is towards the top-right of
the screen:

https://coderefinery.github.io/git-intro/reference/#term-repository
https://en.wikipedia.org/wiki/Forge_(software)
https://coderefinery.github.io/git-intro/reference/#term-clone
https://coderefinery.github.io/git-intro/reference/#term-fork
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
https://github.com/coderefinery/recipe-book

57 EditPins - @ Unwatch 4 ~ % Fork 1 - ¥ Star 0 -

t Addfile - bout b

We use this repository to teach Git and

554c187 - yesterday {5 25 Commits also to collect some nice recipes
ie recipe - yum! 2 days ago 0 Readme
s CC0-1.0 license
sinstructions 2 days ago .
A Activity
foroet the inctrction yesterday = Clctom mrnmartioc

3. You should shortly be redirected to your copy of the repository
YOUR_USER_NAME/recipe-book.

At all times you should be aware of if you looking at your repository or the
CodeRefinery upstream repository.

« Your repository: https:/github.com/USERNAME/recipe-book
« CodeRefinery upstream repository: https:/github.com/coderefinery/recipe-book

We offer three different paths of how to do this exercise:

« on GitHub
« usingVSCode
« using the command line

¢a Exercise: Practice creating commits and branches (20 min)

1. Make sure that you now work on your fork of the recipe-book repository
(USER/recipe-book , not coderefinery/recipe-book)
. First create a new branch and then add a recipe to the branch and commit the change.
. In a new commit, modify the recipe you just added.
. Switch to the main branch and modify a recipe there.

u b WD

. Browse the network and locate the commits that you just created (“Insights” ->
“Network”).

6. Compare the branch that you created with the main branch. Can you find an easy
way to see the differences?

7. Can you find a way to compare versions between two arbitrary commits in the
repository?

8. Try to rename the branch that you created and then browse the network again.

9. Try to create a tag for one of the commits that you created (on GitHub, create a

“release”).

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forking.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forking.png
https://coderefinery.github.io/git-intro/reference/#term-upstream

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.

Solution and walk-through

(1) Make sure you are on your fork

= O bast / recipe-book

<> Code 1 Pullreqdsgts () Actions [Projects (@) Security |~ Insights &Y

ﬁ recipe-book Public your username s Pin ®©Wwatch 0 ~ Y
forked from coderefinery/recipe-book

+ main ~ F © Go to file +

This branch is up to date with cederefinery/recipe-book:main .

il Contribute ~ 2 Syncfork ~

You want to see your username in the URL and you want to see the “forked from ...” part.

(2) Create a branch and add a recipe to the branch

A recipe template is below. This format is called “Markdown”, but it doesn’t matter right now.
You don'’t have to use this particular template.

Recipe name
Ingredients

- Ingredient 1
- Ingredient 2

Instructions

- Step 1
- Step 2

There is a main branch that is default. We want to create a different branch for our new
commit, because we will merge it later. Commit is the verb to describe recording more
changes, and also the name of the thing you make. A commit is identified by something such
as 554c187 .

GitHub VS Code Command line

1. Where it says “main” at the top left, click, enter a new branch name new-recipe ,

click on the offer to create the new branch (“Create branch new-recipe from main”).

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork1.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork1.png
https://coderefinery.github.io/git-intro/reference/#term-branch
https://coderefinery.github.io/git-intro/reference/#term-commit

N3 sotetie |+

Switch branches/tags ecipe-book:main .

Q, Find or create a branch...

Branches Tags

alad' 554c187 + 3 days ago {925 Commits
v main default

: pumpkin pie recipe - yum! 4 days ago
View all branches
- mann veyewarian lasagna: instructions 4 days ago
M0 pasta a todo note to not forget the inst... 3 days ago
I8 salads fruit salad: instructions 3 days ago
00 sides add some cilantro 3 days ago
I soups fix formatting 3 days ago
[LICENSE this will be licensed under CCO 4 days ago
[README.md add categories for easier browsing 4 days ago

2. Change to some sub-directory, for example sides

3. Make sure you are still on the new-recipe branch (it should say it at the top), and
click “Add file” = “Create new file” from the upper right.

4. Enter a filename where it says “Name your file...”, with a .md at the end. Example:

mixed-nuts.md .

5. Enter the recipe. You can use the template above.
6. Click “Commit changes”
7. Enter a commit message. Then click “Commit changes”.

You should appear back at the file browser view, and see your new recipe there.

(3) Modify the recipe with a new commit

GitHub VS Code Command line

This is similar to before, but we click on the existing file to modify.

1. Click on your new recipe, for example mixed-nuts.md .
2. Click the edit button, the pencil icon at top-right.
3. Follow the “Commit changes” instructions as in the previous step.

(4) Switch to the main branch and modify a recipe there

GitHub VS Code Command line

1. Go back to the main repository page (your user’s page).
2. In the branch switch view (top left above the file view), switch to main .

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-branch.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-branch.png

3. Modify another recipe that already exists, following the pattern from above. Don'’t
modify the one you just created (but it shouldn’t even be visible on the main

branch).

(5) Browse the commits you just made

Let’s look at what we did. Now, the main and new-recipe branches have diverged: both

have some modifications. Try to find the commits you created.

GitHub VS Code Command line

Insights tab = Network view (just like we have done before).

(6) Compare the branches

Comparing changes is an important thing we need to do. When using the GitHub view only,
this may not be so common, but we'll show it so that it makes sense later on.

GitHub VS Code Command line

Next to the branch name switcher, click on “Branches” to get an overview.

Another way to compare branches or commits on GitHub is to adjust the following URL:

https://github.com/USER/recipe-book/compare/VERSION1. .VERSION2

Replace user with your username and versioni and version2 with a commit hash or

branch name. Please try it out.

(7) Compare two arbitrary commits

This is similar to above, but not only between branches.

GitHub VS Code Command line

Like above, one can compare commits on GitHub by adjusting the following URL:
https://github.com/USER/recipe-book/compare/VERSION1. .VERSION2

Replace user with your username and versioni and version2 with a commit hash or
branch name. Please try it out.

(8) Renaming a branch

GitHub VS Code Command line

Branch button = View all branches — three dots at right side = Rename branch.

(9) Creating a tag

Tags are a way to mark a specific commit as important, for example a release version. They
are also like a sticky note, but they don’t move when new commits are added.

GitHub VS Code Command line

Click on the branch switcher, and then on “Tags”, then on “View all tags”, then “Create a
new release”:

> main ~ P o Go to file +

Switch branches/tags Yy/recipe-baok:main .

Q, Find a tag...

Branches = Tags
bade93b - 28 minutes ago ¥X) 26 Commits

Nothing to show

: pumpkin pie recipe - yum! 4 days ago
View all tags ian lasagna: instructions 4 days ago
I pasta a todo note to not forget the inst... 3 days ago
I salads fruit salad: instructions 3 days ago
I sides add spring onion to poke 28 minutes ago
I soups fix formatting 3 days ago
[LicensE this will be licensed under CCO 4 days ago
[README.md add categories for easier browsing 4 days ago

What GitHub calls releases are actually tags in Git with additional metadata. For the
purpose of this exercise we can use them interchangeably.

Discussion

In this part, we saw how we can make changes to our files. With branches, we can track
several lines of work at once, and can compare their differences.

https://coderefinery.github.io/git-intro/reference/#term-branch
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-tag.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-tag.png

« You could commit directly to main if there is only one single line of work and it’s only

you.

« You could commit to branches if there are multiple lines of work at once, and you don'’t
want them to interfere with each other.

« Tags are useful to mark a specific commit as important, for example a release version.

Beyond add and commit: undoing mistakes

Most git users will typically use pull, add, commit and push and these 4 commands will

perform >95% of the operations needed.

To be in control of Git, it is beneficial to know at least how to undo these commands.

e Undo git add
e« Undo git commit

« Understand that there are many states, and the complexity that this entails

Git offers you many versions of any file in the repository:

« the onein the working tree
. the onein the index (the index is also called “staging area”)
« as many versions as there are commits.

The committed versions cannot be changed, but new commits can be created, and the
versions in the working tree and in the index can be overwritten.

As a result, there can be many commands that are used to copy one version of a file into
another.

The 3 kinds of states of a file in Git

glt remotes
commit -a U h
: - T T T T~ pus
- ~ . :
commit -a 7 7 commit S T /\
== : : i
- >~
s : L . : .
WOFkIng ”:]dex < new commit > :
tree | (staging area) je———1 g ‘
restore restore —stage
\\;_// | deadbeef..
| s4a78ac2..
;adcl reset —hard 543 / fetch (er pull)

restore —worktree —source 54a78

The different versions of a file in Git and the commands that can be used to copy them into each

other.
The 3 Kinds of State of a file in Git - Table version
from \ to Working Tree Index HEAD
. commit -a .
Working Tree 2dd commit -a
Index restore commit
checkout checkout checkout
<commit> reset —hard reset —-hard reset —hard
restore —SoUrce <...> reset (-mixed) reset (-mixed)
restore (-source <...>) -staged reset -soft

Undoing git add

Undoing git add <path> typically means either to remove the file from the index completely,

but leaving it in the working tree or to recover the previous state of a file in the index . This
might not be always possible, but in most cases the previous state is the one in the last
commit (HEAD).

Undoing git add

Problem Solution
File should not be tracked at all git rm --cached <filename>

Changes to file should not go

. . it restore --staged <filename>
in the next commit g g

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/git-trinity.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/git-trinity.png

Undoing git commit

The commit command cannot actually be undone completely, since it created another
immutable object in the git repository.

Practically, there are some different effects of git commit that we might want to undo:

Undoing git commit

Problem Solution Comments

Change to the files
in the repository

Creates another commit

it t it . .
git revert =scommit= with the opposite changes

Forgot to add a fil git commit You can add the file,
bo;go o ':ﬁ © --amend and then run this command.
Frore commiEng --no-edit Don’tdoitafter git push

You can change the commit message.

i it it -- d .
Wrong commit message g1t comnt amen Don'tdoitafter git push

git reset

Branch has moved
--soft

to new commit

<last-good-commit>

Moves the current branch
to the chosen commit.
Don'tdoit after git push

O Avoid rewriting published history

If you have already published your changes to a branch with git push and someone has

already seen them (and perhaps started working on them) using git reset or git commit

--amend could be considered very rude!

Why?

With those commands you do, in other words, rewrite the history of the branch. This

means that the tracking information of the branches in the other repositories might be

inconsistent.

If someone works on a history that has been later rewritten, it might result in introduction

of undesired modifications to the repository. Moreover, it might be hard to spot that such

changes occurred.

In that case, better to use

Patching: Partial commands

Most of the commands listed above accept a --patch (or -p) option that allows to

interactively select the parts (hunks) of a file that will be copied, very useful when some

additional finesse is required.

O Take-home messages

« Toundo git add , typically you need to copy the content of Heap into the index. git
restore --staged <file-path> OI git reset will do it.

« To undo a commit, typically you want to use git revert . If you have not used git
push Yyet, you have fancier options.

« A convenient guide to get out of unpleasant situations can be found here.
« An alternative explanation of many useful “life-saving” commands is available here

Inspecting history

O Objectives

« Be able find a line of code, find out why it was introduced and when.
« Be able to quickly find the commit that changed a behavior.

Instructor note

« 30 min teaching/type-along
« 20 min exercise

Command line, GitHub, and VS Code

As usual, we offer ways to do this with the command line, VS Code, and GitHub.

« Command line is most powerful and relatively easy with this. You may also use it along
with other things. If you haven't tried it yet, we'd recommend you to give it a try.

« The GitHub web interface allows many things to be done, but not everything.

« VS Code allows some of these, but for some it’s easier to open the VS Code terminal and
run git there.

Our toolbox for history inspection

Instructor note

First the instructor demonstrates few commands on a real life example repository
https:/github.com/networkx/networkx (mentioned in the amazing site The Programming
Historian). Later we will practice these in an archaeology exercise (below).

Warm-up: “Git History” browser

As a warm-up we can try the “Git History” browser on the README.rst file of the networkx
repository:

https://dangitgit.com/en
https://coderefinery.github.io/git-intro/recovering/
https://github.com/networkx/networkx
https://programminghistorian.org/
https://programminghistorian.org/
https://githistory.xyz/
https://githistory.xyz/
https://github.com/networkx/networkx

« Visit and browse
https:/github.githistory.xyz/networkx/networkx/blob/main/README.rst (use left/right
keys).

« You can try this on some of your GitHub repositories, too!

Searching text patterns in the repository
With git grep you can find all lines in a repository which contain some string or regular

expression. This is useful to find out where in the code some variable is used or some error
message printed.

Command line GitHub VS Code RStudio
The Git command is as described above:

$ git grep TEXT
$ git grep "some text with spaces"

In the networkx repository you can try:

$ git clone https://github.com/networkx/networkx
$ cd networkx

$ git grep -i fixme

While git grep searches the current state of the repository, it is also possible to search
through all changes with git log -s sometext which can be useful to find where
something got removed.

Inspecting individual commits

Command line GitHub VS Code RStudio

We have seen this one before already. Using git show we can inspect an individual
commit if we know its hash:

$ git show HASH

For instance:

https://github.githistory.xyz/networkx/networkx/blob/main/README.rst
https://github.com/networkx/networkx

$ git show 759d589bdfa6laff99e0535938f14f67b01c83f7

Line-by-line code annotation with metadata

With git annotate you can see line by line who and when the line was modified last. It also
prints the precise hash of the last change which modified each line. Incredibly useful for

reproducibility.
Command line GitHub VS Code RStudio

$ git annotate FILE

Example:

$ git annotate networkx/convert_matrix.py

If you annotate in a terminal and the file is longer than the screen, Git by default uses
the program 1less to scroll the output. Use /sometext <ENTER> to find “sometext” and

you can cycle through the results with n (next) and n (last). You can also use page

up/down to scroll. You can quit with q .

® Discussion

Discuss how these relatively trivial changes affect the annotation:

« Wrapping long lines of text/code into shorter lines
« Auto-formatting tools such as black

« Editors that automatically remove trailing whitespace
Inspecting code in the past

Command line GitHub VS Code RStudio

We can create branches pointing to a commit in the past. This is the recommended

mechanism to inspect old code:

$ git switch --create BRANCHNAME HASH

Example (lines starting with “#” are only comments):

create branch called "older-code" from hash 347e6292419b
git switch --create older-code 347e6292419bd0e4bff077fe971f983932d7a0e9

»n &

©»

now you can navigate and inspect the code as it was back then
$ # ...

after we are done we can switch back to "main"
git switch main

® &

<+

1f we like we can delete the "older-code" branch
git branch -d older-code

<+

On old Git versions which do not know the switch command (before 2.23), you need to

use this instead:

$ git checkout -b BRANCHNAME SOMEHASH

Exercise

This is described with the command line method, but by looking above you can translate to
the other options.

ga Exercise: Explore basic archaeology commands (20 min)

Let us explore the value of these commands in an exercise. Future exercises do not
depend on this, so it is OK if you do not complete it fully.

Exercise steps:
« Make sure you are not inside another Git repository when running this exercise. If

you are, first step “outside” of it. We want to avoid creating a Git repository inside
another Git repository.

Command line GitHub VS Code RStudio

You can check if you are inside a Git repository with:

$ git status

fatal: not a git repository (or any of the parent directories): .git

You want to see the above message which tells us that this is not a Git repository.

« Clone this repository: https:/github.com/networkx/networkx.git.

Command line GitHub VS Code RStudio

$ git clone https://github.com/networkx/networkx.git

« Then let us all make sure we are working on a well-defined version of the repository.

Command line GitHub VS Code RStudio

Step into the new directory and create an exercise branch from the networkx-
2.6.3 tag/release:

$ cd networkx
$ git switch --create exercise networkx-2.6.3

On old Git versions which do not know the switch command (before 2.23), you

need to use this instead:

$ git checkout -b exercise networkx-2.6.3

Then using the above toolbox try to:

1. Find the code line which contains "Logic error in degree_correlation" .

2. Find out when this line was last modified or added. Find the actual commit which
modified that line.

3. Inspect that commit with git show .

4. Create a branch pointing to the past when that commit was created to be able to
browse and use the code as it was back then.

https://github.com/networkx/networkx.git

5. How would you bring the code to the version of the code right before that line was
last modified?

We provide here a solution for the command line but we also encourage you to try to
solve this in the browser.

1. We use git grep :

$ git grep "Logic error in degree_correlation"

This gives the output:

networkx/algorithms/threshold.py: print("Logic error in
degree_correlation", i, rdi)

Maybe you also want to know the line number:

$ git grep -n "Logic error in degree_correlation"

2. We use git annotate :

$ git annotate networkx/algorithms/threshold.py

Then search for “Logic error” by typing “/Logic error” followed by Enter. The last
commit that modified it was 9es44b4fa (unless that line changed since).

3. We use git show :

$ git show 90544b4fa

4. Create a branch pointing to that commit (here we called the branch “past-code”):

$ git branch past-code 90544b4fa

5. This is a compact way to access the first parent of 9es44bafa (here we called the

branch “just-before”):

$ git switch --create just-before 90544b4fa~1

Finding out when something broke/changed with git bisect
This only works with the command line.
“But | am sure it used to work! Strange.”

Sometimes you realize that something broke. You know that it used to work. You do not
know when it broke.

& How would you solve this?

Before we go on first discuss how you would solve this problem: You know that it worked
500 commits ago but it does not work now.

« How would you find the commit which changed it?
« Why could it be useful to know the commit that changed it?

We will probably arrive at a solution which is similar to git bisect :

First find out a commit in past when it worked.

$ git bisect start
$ git bisect good f0ea950 # this is a commit that worked
$ git bisect bad main # last commit is broken

Now compile and/or run and/or test and decide whether “good” or “bad”.

This is how you can tell Git that this was a working commit:

$ git bisect good

And this is how you can tell Git that this was not a working commit:

$ git bisect bad

Then bisect/iterate your way until you find the commit that broke it.
« If you want to go back to start, type git bisect reset .

« This can even be automatized with git bisect run scrIPT . For this you write a script

that returns zero/non-zero (success/failure).

Optional exercise: Git bisect

This only works with the command line.

ga (optional) History-2: Use git bisect to find the bad commit

In this exercise, we use git bisect on an example repository. It is OK if you do not

complete this exercise fully.

Begin by cloning https:/github.com/coderefinery/git-bisect-exercise.

Motivation

The motivation for this exercise is to be able to do archaeology with Git on a source code
where the bug is difficult to see visually. Finding the offending commit is often more than
half the debugging.

Background

The script get_pi.py approximates pi using terms of the Nilakantha series. It should

produce 3.14 but it does not. The script broke at some point and produces 3.57 using the
last commit:

$ python get_pi.py

3.57

At some point within the 500 first commits, an error was introduced. The only thing we
know is that the first commit worked correctly.

Your task

« Clone this repository and use git bisect to find the commit which broke the

computation (solution - spoiler alert!).

« Once you have found the offending commit, also practice navigating to the last good
commit.

« Bonus exercise: Write a script that checks for a correct result and use git bisect run

to find the offending commit automatically (solution - spoiler alert!).

Hints

https://github.com/coderefinery/git-bisect-exercise
https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert
https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert

Finding the first commit:

$ git log --oneline | tail -n 1

How to navigate to the parent of a commit with hash SOMEHASH:

$ git switch --create BRANCHNAME SOMEHASH~1

Instead of a tilde you can also use this:

$ git switch --create BRANCHNAME SOMEHASHA

Summary

. git log/grep/annotate/show/bisect is a powerful combination when doing archaeology in
a project on the command line.
e git switch --create NAME HASH is the recommended mechanism to inspect old code on

the command line.
« Most of these commands can be used in the GitHub web interface (except git bisect).

Optional: Git Internals

O Objectives

« Understand what is easy to do with git, and what is not easy

Instructor note

« 15 min teaching/type-along
« 15 min exercise

Down the rabbit hole

When usually working with Git, you will never need to go inside .git, but in this exercise we
will in order to learn about

« how branches are implemented in Git, and how to use them freely
« how you can avoid losing data with Git.

£} Prerequisites

For this exercise create a new repository and commit a couple of changes. You can also
clone this repository:

$ git clone https://github.com/mmesiti/merge-fu.git

Now that we've made a couple of commits let us look at what is happening under the hood.

$ cd .git
$ 1s -1

drwxr-xr-x - user 25 Aug 15:51 branches
.Frw-r--r-- 499 user 25 Aug 15:52 COMMIT_EDITMSG
.fw-r--r-- 92 user 25 Aug 15:51 config
.rw-r--r-- 73 user 25 Aug 15:51 description
.rW-r--r-- 21 user 25 Aug 15:51 HEAD

drwxr-xr-x - user 25 Aug 15:51 hooks
.rw-r--r-- 137 user 25 Aug 15:52 index
drwxr-xr-x - user 25 Aug 15:51 info
drwxr-xr-x - user 25 Aug 15:52 logs
drwxr-xr-x - user 25 Aug 15:52 objects
drwxr-xr-x - user 25 Aug 15:51 refs

Git stores everything under the .git folder in your repository.
We will have a look at the objects and the refs directories.

In the objects directory we find, among others, 3 kinds of objects:

o commit S: These represent the commits we have made with git commit

e blob s: These represent snapshots of all the files we have ever added to the repo with
git add .

« tree S: These represent directories containing the files we have added, and reference

other tree s (subdirectories)and blob s (files that we have added).

commit objects contain information about the author and the commit message, and every

commit object references a single tree object.

All objects are named as the SHA-1 hash (a 40-character hexadecimal string) that is
computed on their content.
This means that all objects are immutable.

98ca9

commit size
tree 92ec2
author Scott
committer Scott

The initial commit of my project

92ec?

blob size

== Testing library

This library is used to test
Ruby projects.

911e7
blob size

The MIT License

Copyright (c) 2008 Scott Chacen

Permission is hereby granted,
free of charge

chala

require 'logger’

require 'test/unit’

class Test::Unit::TestCase

States of a Git repository. Image from the Pro Git book. License CC BY 3.0.

g Changes and their effect: files and commits

Refer to the figure above, and discuss: which SHA-1 hashes would change in the diagram

if:

« the content of the first file is changed,
« we recreate a commit with another message or author
« we recreate a commit with the same message or author

Is it possibe to have multiple commits refer to the same tree? What happens when you

use git revert ?

When reverting a commit B that happens after a commit A, the new commit will point

at the same tree as A.

Once you have several commits, each commit object also links to the hash of the previous
commit(s) (there is more than one previous commit for for merge commits). The commits
form a directed acyclic graph (do not worry if the term is not familiar).

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-and-tree.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-and-tree.png
https://git-scm.com/book/
http://eagain.net/articles/git-for-computer-scientists/

98caf 3dac2 fidab

commit size commit size commit size

tree 92Zec2 tree 1B4dca tree fde24

parent parent 98ca9 parent 34ac2

author Scott - author Scott - author Scott

committer Scott committer Scott committer Scott
The imitial commit of my project Fixed bug #1328 - stack overflow add feature #32 - ability to add new
under certaln conditilons formats to the central interface

Y Y Y

Snapshot A Snapshot B Snapshot C

A commit and its parents. Image from the Pro Git book. License CC BY 3.0.

& Changes and their effect: changing history

Refer to the figure above, and discuss: which SHA-1 hashes would change in the diagram
if:

o The the 3rd commit were changed
« The 2nd commit were changed

Git is at its core a content-addressed storage system

« CAS: “mechanism for storing information that can be retrieved based on its content, not
its storage location”

« Content address is the content digest (SHA-1 checksum)

« Stored data does not change, so when we modify commits or add new version of the files,
we always create new objects. Git doesn’t delete the old objects right away, which is why
it is very hard to lose data if you commit it once.

w Alook at the objects

Let us poke a bit into raw objects! Start with:

$ git cat-file -p HEAD

Then explore the tree object, then the file object, etc. recursively using the hashes

you see.

Demo: If you add it, you don't lose it (for a while)

A common way to (apparently) lose work is to use git add indiscriminately.

You make some changes to a file, (let us call this version A) you git add them, then you make

some other changes (let us call this version B) and you git add those again.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commits-and-parents.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commits-and-parents.png
https://git-scm.com/book/
https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage

Now version A is apparently lost, and if we realize that we need it back we typically click
nervously on the “undo” arrow of our editor.

But fear not! Try this.

1. Create a file named test-add with the following command:

echo 'Once a file has been git added, it is hard to lose!' > test-add

2. Add it to the repository

$ git add test-add

3. Now change the content of the file to be

ops

4. And repeat the add command

$ git add test-add

5. Apparently we have lost the previous version of the file. But it is actually there, stored in
a dangling blob object (which is not referenced, even indirectly, by any ref) We can see

this with the command fsck :

$ git fsck
Checking object directories: 100% (256/256), done.
dangling blob dc3b15f60045eea7a87639436ed75021130579e0

We can see the content of that blob by passing its hash (shortened for convenience) to
the git cat-file -p command:

$ git cat-file -p dc3b
Once a file has been git added, it is hard to lose!

Deletion of dangling objects is done by a garbage collector that might be triggered
automatically by some commands.

@ Discussion

Discuss the findings with other course participants.

Operating on Branches

A branch represents independent line of work. Git internal structure makes it very easy to
implement branches as a thin layer of abstraction on its Object database.

« Understand that branches are just pointers to commits
« Manipulate local branches

In this exercise we will look inside the .git directory in order to learn about how branches

are implemented in Git, and how to use them freely.

Demonstration: experimenting with branches
Branches are pointers to commits that move over time.

We are starting from the main branch and create an idea branch:

$ git status

On branch main

nothing to commit, working tree clean
$ git branch idea

$ git switch idea

Switched to a new branch 'idea'

(Creating a branch and switching to it can be done in a single command with git switch --

create <branch-name>)

$ git branch

* idea
main

Let us lift the hood and create few branches “manually”, without using the git branch
command.

Let us have a look at the refs directory:

https://coderefinery.github.io/git-intro/reference/#term-branch

$ 1s -1 .git/refs/heads

.rw-r--r-- 41 user 25 Aug 15:54 idea
.rw-r--r-- 41 user 25 Aug 15:52 main

Let us check what the idea file looks like (do not worry if the hash is different):

$ cat .git/ref/heads/idea

045e3db14740c60684d745e5fb891ae71e335611

Now let us replicate this file:

$ cp .git/refs/heads/idea .git/refs/heads/idea-2
$ cp .git/refs/heads/idea .git/refs/heads/idea-3

Let us go up two levels and inspect the file HeAD :

$ cat .git/HEAD

ref: refs/heads/idea

Let us open this file and change it to:

ref: refs/heads/idea-3

Now - on which branch are we?

$ git branch

idea

idea-2
* idea-3

main

&a Exercise

By changing the content of .git/HEAD we have manually “switched” from a branch to

another one that actually points to the same commit.

What would have happened if we changed HEAD to point to a branch that does not
point to the same commit as the one we were on before? What would we see with git

status ?

g Branches on different repositories

How are branches on different repositories related to each other?

After creating a branch, one can use the --set-upstream-to options

$ git branch <new-branch>
$ git branch <new-branch> --set-upstream-to=<remote>/<branch>

to set the default upstream branch.

When pushing, it is possible to use the verbose command:

$ git push <repository> <local-branch>:<remote-branch>

Typically <local-branch> and <remote-branch> are the same, and :<remote-branch> is
omitted it is assumed to be equal to <local-branch> .

git push can also use the default upstream branch if configured correctly:

$ git config --local push.default upstream

But typically there is no need for such complex setups.
Deleting branches (also by mistake - and undoing it)
Let us add some work on the branch idea-3 , and create some additional commits.
Let's assume we want to remove the branch idea-2 , to tidy up our repository.

We first switch to main , then try to remove the useless branch

$ git switch main
$ git branch -d idea-3
error: The branch 'idea-3' is not fully merged.

We are sure we want to delete, so we use the -p option.

$ git branch -D idea-3

We then get distracted and go doing something else.

$ clear

Wait a moment! We deleted the wrong branch. Is our work lost? Using

$ git reflog

we can see all the last commits pointed at by HEAD, and among them there will be the one
which was referenced by idea-3 before we deleted it. We can check it out and recreate our

branch.
Moving branches back to where they pointed

When using many commands, we move forward the branch we are on.

We can make a branch point back to where it pointed before by switching to it and using

git reset --soft.

If we do not exactly remember where it pointed, we can use git reflog <branch name> to get

an idea of where it was moved.

Visualizing branches efficiently

When working with branches on the command line, it is useful to look at the log with the
following command (or something similar):

$ git log --oneline --graph --all

It is inconvenient to type such a long message every time. Git allows us to configure an alias
for it, in this case it will be called graph :

$ git config --global alias.graph "log --all --oneline --graph --decorate"

After this configuration, we will be able to use graph as a git command with the same effect

as the original, longer command.

Concepts around collaboration

« Be able to decide whether to divide work at the branch level or at the repository level.

Instructor note

« 15 min teaching

Motivation

Someone has given you access to a repository online and you want to contribute?

We will review how to make a copy and send changes back.

« Then, we make a “pull request” that allows a review.
Once we know how code review works, we will be able to:

o propose changes to repositories of others
o review changes submitted by external contributors.

Cloning a repository

In order to make a copy a repository (a clone), the git clone command can be used. Cloning

of a repository is of relevance in a few different situations:

« Working on your own, cloning is the way to copy a repository on, e.g., a personal
computer, a server, and a supercomputer.

« The original repository could be a repository that you or your colleague own. A common
use case for cloning is when working together within a smaller team where everyone has
read and write access to the same git repository.

« Alternatively, cloning can be made from a public repository of a code that you would like
to use. Perhaps you have no intention to work on the code, but would like to stay in tune
with the latest developments, also in-between releases of new versions of the code.

« Your work is not visible to others, because it is on your computer.

GitHub

originidea

|
y

r———. origimain
)
B—a—8u

Cloning
Forking a repository

Forking a repository on a forge creates a clone that reside under a different account on the
same forge (a fork).

It is typically done to work on a git repository you cannot write to.

« Your work is visible to others, because it is on the web
« commits in the fork can be made to any branch (including main or master)

« The commits that are made within the branches of the fork repository can be contributed
back to the parent repository by means of pull (or merge) requests.

—~—

idea

I

Y
F = /main — F u /main
// L= - ,/ 1_

V1.0 A\ V1.0

GitHub

xperimenta

User's Repo

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/clone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/clone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork.png

Forking

s Exercise

What is the difference between forking and then cloning (your fork, to your computer) vs
cloning (to your computer) and then pushing to a brand new repository?

1. Forking on a forge and then cloning creates links:

« from your fork to the original repository;
« from clone to your fork.
2. When cloning and then pushing to a new repository, you will create links:

« from your clone to the original repository;
« from your clone to the new repository.

Your repository on the forge will not have a link to the original repository and will
not be listed as a fork of the original repository.

Generating from templates and importing

There are two more ways to create “copies” of repositories into your user space:

« Arepository can be marked as template and new repositories can be generated from it
like using a cookie-cutter. The newly created repository will start with a new history.

« You can import a repository from another hosting service or web address. This will
preserve the history of the imported project and features like Wikis, issues and the like.

® Discussion

« Visit one of the repositories/projects that you have used recently and try to find out
how many forks exist and where they are.

« In which situations could it be useful to start from a “template” repository by
generating?

Synchronizing changes between repositories

« We need a mechanism to communicate changes between the repositories.

« We will pull or fetch updates from remote repositories (we will soon discuss the
difference between pull and fetch).

« We will push updates to remote repositories.

« We will learn how to suggest changes within repositories on a forge and across
repositories (pull request).

« Repositories that are forked or cloned do not automatically synchronize themselves: We
will learn how to update forks (by pulling from the “central” repository).
« A main difference between cloning a repository and forking a repository is that
o cloning is a general operation for generating copies of a repository to different
computers
o forking is a particular operation implemented on forges (that includes cloning)

GitHub

User's Repo

originidea

Y
originmain
} P
B—a—a—a

Forking and cloning
Authentication: connecting to the repository from your computer

There are mainly two ways to do authentication:

o SSH keys
o HTTPS

Please have a look at this guide by CodeRefinery for a general introduction to authentication
options.

We suggest setting up and using an SSH key, since it is a form of authentication that is also
used on other services (e.g., to access HPC systems). For a step-by-step guide look at this
walkthrough by Software Carpentry.

Authentication via HTTPS might require less set up, if password authentication is allowed.
If not, you can use a personal access token as a drop-in replacement, which can be
configured at these pages:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forkandclone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forkandclone.png
https://coderefinery.github.io/installation/ssh/
https://swcarpentry.github.io/git-novice/07-github.html#ssh-background-and-setup
https://swcarpentry.github.io/git-novice/07-github.html#ssh-background-and-setup

» gitlab.com
« gitlab.kit.edu

Problems in Collaborative Software development

Merging can be a difficult moment in the life cycle of a software.
Git will try to do reasonable operations when merging two different lines of work, but:

« There might be an detectable ambiguity in the way that two different lines of work can be
reconciled (this leads to a conflict)

« theresults are not guaranteed to give you working software all the times (i.e., you don't
get a conflict, but the result is not correct either - this is scarier).

Contributing to the main branch as often as possible, to make the changes as small as
possible, is a possible approach to reduce the difficulty related to merging.

In the following chapters we will focus on tools that ease the communication aspect of
collaborative software development.

Collaborating within the same repository: issues and pull
requests

In this episode, we will learn how to collaborate within the same repository. We will learn
how to cross-reference issues and pull requests, how to review pull requests, and how to use
draft pull requests.

This exercise will form a good basis for collaboration that is suitable for most research
groups.

Exercise

In this exercise, we will contribute to a repository via a pull request. This means that you
propose some change, and then it is accepted (or not).

£ Exercise preparation

First, we need to get access to some repository to which we will contribute.

1. Form not too large groups (4-5 persons), which have accounts on the same forge.

2. Each group needs to appoint someone who will host the shared repository: the
maintainer. This is typically the exercise lead (if available). Everyone else is a
collaborator.

3. The maintainer (one person per group) generates a new repository called centralized-

workflow-exercise on the selected forge:

https://gitlab.com/-/user_settings/personal_access_tokens
https://gitlab.kit.edu/-/user_settings/personal_access_tokens

¥ How to prepare the repository

On github.com On other Forges: Clone and Push to new repository

The repository can be generated from the template
https:/github.com/coderefinery/template-centralized-workflow-exercise (There is
no need to tick “Include all branches” for this exercise):

i template-centralized-workflow-exercise Public template

57 Edit Pins + @ Unwatch 4 - % Fork 8 - Y9 Star 1 -

¥ main ~ F o Go to file + out ©3

We use this repository to teach

Riley Johnson Merge branch 'al... 554c187 - lastweek %) 25 Commits Git and also to collect some

nice recipes
I desserts a classic pumpkin pier... last week
[0 Readme
B mains vegetarian lasagna: ins... last week &5 CCO-1.0 license
M pasta a todo note to not forg... last week - Activity
= Custom properties
I salads fruit salad: instructions last week
v7 1star
I sides add some cilantro last week @ 4watching
. . 8 forks
M soups fix formatting last week ¥
Report repository
[LICENSE this will be licensed un... last week
[README.md add categories for easi... last week Releases

K ralancae medhlichad

« Then everyone in your group needs their account on the forge to be added as
collaborator to the exercise repository:
o Collaborators give their usernames on the forge to their chosen maintainer.
o Maintainer gives the other group members the newly created repository URL.
o Maintainer adds participants as collaborators to their project.
= on github.com: Settings -> Collaborators and teams -> Manage access ->
Add people.
= on GitLab: Manage -> Members -> Invite Members. Choose at least the
Maintainer role for this exercise
= on Codeberg: Settings -> Collaborators
- Don't forget to accept the invitation
o Check your personal area on the forge of choice (look for your notifications)
o Alternatively check the inbox for the email account you registered with the
forge.
= GitHub emails you an invitation link, but if you don’t receive it you can go to
your GitHub notifications in the top right corner. The maintainer can also
“copy invite link” and share it within the group.

https://github.com/coderefinery/template-centralized-workflow-exercise
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/generate_repo.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/generate_repo.png

« Watching and unwatching repositories

o Now that you are a collaborator, you get notified about new issues and
pull/merge requests via email.

o If you do not wish this, you can “unwatch” a repository (top of the project
page).

o However, we recommend watching repositories you are interested in. You can
learn things from experts just by watching the activity that come through a
popular project.

ﬁ centralized-workflow-exercise Public

generated from coderefinery/template-centralized-workflow-exercise

5P Pin @ Watch 0 ~ % Fork O - 7 sStar O -
Notifications X
¥ main -~ F © GgAo file + Participating and @mentions e
Only receive notifications from this
repository when participating or ory

@mentioned.

@88 bast Initial commit

i, : All Activity
B desserts Initial commit Motified of all notifications on this -
) ») repository.
M mains Initial commit
Ignore
M pasta Initial commit Never be notified.
I salads Initial commit Custom >
Select events you want to be notified of in
M sides Initial commit addition to participating and @mentions.
[soups Initial commit D Get push notifications on 105 or Android. 4

Unwatch a repository by clicking “Unwatch” in the repository v;'ew, then “Participating
and @mentions” - this way, you will get notifications about your own interactions.

g Exercise: Collaborating within the same repository (45 min)

Technical requirements (from installation instructions):

o If you create the commits locally: Being able to authenticate to GitHub

Skills that you will practice:

« Cloning a repository (CodeRefinery lesson)

 Creating a branch (CodeRefinery lesson)

« Committing a change on the new branch (CodeRefinery lesson)

« Submit a pull request towards the main branch (CodeRefinery lesson)

« If you create the changes locally, you will need to push them to the remote repository.

» Learning what a protected branch is and how to modify a protected branch: using a
pull request.

o Cross-referencing issues and pull requests.

« Practice to review a pull request.

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/local-workflow/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

« Learn about the value of draft pull requests.
Exercise tasks:

1. Open an issue where you describe the change you want to make. Note down the issue
number since you will need it later.

2. Create a new branch.

3. Make a change to the recipe book on the new branch and in the commit cross-
reference the issue you opened (see the walk-through below for how to do that).

4. Push your new branch (with the new commit) to the repository you are working on.

5. Open a pull request towards the main branch.

6. Review somebody else’s pull request and give constructive feedback. Merge their pull
request.

7. Try to create a new branch with some half-finished work and open a draft pull request.
Verify that the draft pull request cannot be merged since it is not meant to be merged
yet.

Solution and hints
(1) Opening an issue

This is done through the web interface of your preferred forge. For example, you could give
the name of the recipe you want to add (so that others don’t add the same one).

« On github.com and codeberg.org: Top row -> the “Issues” tab.
o On GitLab: Left side -> Plan -> Issues

(2) Create a new branch.
You have two options:
« make the branch in the web interface (CodeRefinery lesson - refresher, for GitHub:
Committing changes)
« If working locally, you need to know how to work locally.
Note: on GitLab, it is possible to create a merge request (and a branch) directly from an issue.

(3) Make a change adding the recipe

Add a new file with the recipe in it. Commit the file. In the commit message, include the note
about the issue number, saying that this will close that issue.

Cross-referencing issues and pull requests

https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/local-workflow/

Each issue and each pull request gets a number and you can cross-reference them.

When you open an issue, note down the issue number (in this case it is #2):

<> Code (5 Issues 1 11 Pull requests 1 @) Actions [Projects [

Ideg/for a new recipe

bast opened this issue now - 0 comments

ﬁ bast commented now Owner | ses

And here is the idea

@

You can reference this issue number in a commit message or in a pull request, like in this
commit message:

this is the new recipe; fixes #2

If you forget to do that in your commit message, you can also reference the issue in the pull
request description. And instead of fixes you can also use closes Or resolves Or fix Or

close Or resolve (caseinsensitive).

Then observe what happens in the issue once your commit gets merged: it will automatically
close the issue and create a link between the issue and the commit. This is very useful for
tracking what changes were made in response to which issue and to know from when until
when precisely the issue was open.

(4) Push to your forge as a new branch

Covered in Cloning a Git repository and working locally.

Push the branch to the repository. You should end up with a branch visible in the web view
of your forge.

This is only necessary if you created the changes locally. If you created the changes directly
on the web interface of the forge, you can skip this step.

VS Code Command line

In VS Code, you can “publish the branch” to the remote repository by clicking the cloud
icon in the bottom left corner of the window:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/issue-number.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/issue-number.png
https://coderefinery.github.io/git-intro/local-workflow/

> pasta

> salads

> sides

> soups

fl LICENSE
README.md

> OUTLINE
> TIMELINE

X | ¢ new-recipe &

If the remote points to the wrong place, you can change it with:

$ git remote set-url origin NEWADDRESS

(5) Open a pull request towards the main branch

This is done through the GitHub web interface. We saw this in, for example, in a previous
lesson.

(6) Reviewing pull requests

You review through the web interface.
Checklist for reviewing a pull request:

« Bekind, on the other side is a human who has put effort into this.

« Be constructive: if you see a problem, suggest a solution.

« Towards which branch is this directed?

o Is the title descriptive?

o Is the description informative?

« Scroll down to see commits.

« Scroll down to see the changes.

« If you get incredibly many changes, also consider the license or copyright and ask where
all that code is coming from.

« Again, be kind and constructive.

« Later we will learn how to suggest changes directly in the pull request.

https://coderefinery.github.io/git-intro/merging/
https://coderefinery.github.io/git-intro/merging/
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/vscode-publish-branch.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/vscode-publish-branch.png

If someone is new, it's often nice to say something encouraging in the comments before
merging (even if it's just “thanks”). If all is good and there’s not much else to say, you could

merge directly.
(7) Draft/WIP pull requests

Try to create a draft pull request:

half-finished work, waiting for feedback

Add a description

Write Preview H B I i= <& & ===

Add your description here...

[Markdown is supported [EA Paste, drop, or click to add files

Create pull request

(i) Remember, contributions to thisrep v Create pull request
Guidelines. Open a pull request that is ready fgpfreview

Create draft pull request
-o- 1 commit Cannot be merged until marked ready for

review

i Ll 1o anad

Verify that the draft pull request cannot be merged until it is marked as ready for review:

bast commented 25 minutes ago * edited ~ Owner

Can you please give me feedback?

(®)

O ﬁ half-finished work, waiting for feedback @t9acsh

Add more commits by pushing to the work-in-progress branch on
bast/centralized-workflow-exercise.

/a9 This pull request is still a work in Ready for review

progress
Draft pull requests cannot be merged.

Merge pull request - or view command line instructions.

Draft/WIP pull requests can be useful for:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr-wip.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr-wip.png

« Feedback: You can open a pull request early to get feedback on your work without
signaling that it is ready to merge.

« Information: They can help communicating to others that a change is coming up and in
progress.

« Discussion: while an issue can be used to discuss a problem, a draft pull request can be
used to show a possible solution

What is a protected branch? And how to modify it?

A protected branch is a branch that has some restrictions. For example, it cannot
(accidentally) deleted or force-pushed to. It is also possible to require that a branch cannot
be directly pushed to or modified, but that changes must be submitted via a pull or merge
request (that can be accepted or rejected by the owners or maintainers of the repository).

To protect a branch in your own repository:

« on github.com and codeberg.org: “Settings” -> “Branches”.
« on GitLab: “Settings” -> Repository -> Branches

Summary

« Issue/bug tracking is a very important part of the code development process.

« We practiced working with issues and pull requests, and how they can be related

« The pull request allowed us to contribute to a repository without directly changing its
content, but ask for permission. This is appropriate in many collaborative development
scenarios.

Code review demo

Here we will practice the code review process. We will learn:
« how to ask for changes in a pull request;
« how to suggest a change in a pull request;
« how to modify a pull request.

This will enable research groups to work more collaboratively, which should help to

« improve the code quality
 learn from each other.

Note that pair programming is usually seen as possible alternative to code review.
Compared to the practice of code review, it has its own pros and cons.

Exercise

£ Exercise preparation

We can continue in the same exercise repository which we have used in the previous
episode.

g Exercise: Practicing code review (25 min)

Technical requirements:
« If you create the commits locally: Being able to authenticate to your preferred forge
What should be familiar:

« Creating a branch (lesson from CodeRefinery)
« Committing a change on the new branch (lesson from CodeRefinery)
« Opening and merging pull requests (lesson from CodeRefinery)

What will be new in this exercise:

« As areviewer, we will learn how to ask for changes in a pull request.

« As areviewer, we will learn how to suggest a change in a pull request.

« As a submitter, we will learn how to modify a pull request without closing the
incomplete one and opening a new one.

Exercise tasks:

1. Create a new branch and one or few commits: in these improve something but also
deliberately introduce a typo and also a larger mistake which we will want to fix
during the code review.

2. Open a pull request towards the main branch.

3. As a reviewer to somebody else’s pull request, ask for an improvement and also
directly suggest a change for the small typo. (Hint: suggestions are possible through
the GitHub web interface, view of a pull request, “Files changed” view, after selecting
some lines. Look for the “+” button.)

4. As the submitter, learn how to accept the suggested change. (Hint: GitHub web
interface, “Files Changed” view.)

5. As the submitter, improve the pull request without having to close and open a new
one: by adding a new commit to the same branch. (Hint: push to the branch again.)

6. Once the changes are addressed, merge the pull request.

Help and discussion

From here on out, we don't give detailed steps to the solution. You need to combine what you
know, and the extra info below, in order to solve the above.

Asking for changes in a pull request: 2 ways

https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

1. Either in the comment field of the pull request:

bast commented now Owner
hope you like it!

@

0 ﬁ vanilla ice cream recipe - QfcB73f

Add more commits by pushing to the radovan/icecream branch on
bast/centralized-workflow-exercise.

¢ Require approval from specific reviewers

before merging Add rule
Rulesets ensure specific people approve pull
requests before they're merged.

X

@ Continuous integration has not been set up
GitHub Actions and several other apps can be used to automatically catch
bugs and enforce style.

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request Al or view command line instructions.

Add a comment

=

Write i H B I = ¢ & =

2. Or by using the “Review changes”:

vanilla ice cream recipe #3 it | <> code ~

jQUO N bast wants to merge 1 commitinto main from radovan/icecream 0]

3 Conversation o o Commits 1 Fl Checks o [®) Files changed 1 +9 -0 HNEEN

0/ 1 files viewed

Changes from all commits = File filter + Conversations = Jump to E§3 - Review changes ~

~ 9 EEEEE desserts/icecream.md [CJ <> O O viewed (3

@@ -9,0 +1,9 0@
+ # Vanilla iscream recipe
+

+ ## Ingredients

- 2 cups heavy cream
- 1 cup whole milk

+ o4+ 4+

374 cup granulated sugar

1 tablespoon pure vanilla extract
Pinch of salt

Li=T = = R R = B L L

+
'

And always please be kind and constructive in your comments. Remember that the goal is not
gate-keeping but collaborative learning.

Suggest a change in a pull request as a reviewer

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/files-changed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/files-changed.png

If you see a very small problem that is easy to fix, add a comment by clicking on the sign next
to the line number in the tab that shows the changes:

File filter » Conversations~ Jumpto~ @ - 071 files viewed

cecream.md [CJ < D O viewed = [J «ee

1 + # Vanilla iscream recipe

Write Preview H B J 1= <> ==

Leave a comment

CO Markdown is supported

[E- Paste, drop, or click to add files

Cancel Add single comment

+

Ingredients

2 cups heavy cream
+ - 1 cup whole milk
+ - 3/4 cup granulated sugar

+ - 1 tablespoon pure vanilla extract

0 M = @ N o W Pk
i

+ - Pinch of salt

Here you can comment on specific lines or even line ranges.

Click on the “Add suggestion/Insert suggestion” symbol. Now you can fix the tiny problem (in
this case a typo) and then click on the “Add single comment” button:

1 + & Vanilla iscream recipe
Writm H B I = ¢ -

“'suggestion
Vanilla jscream recipe

D Markdown is suppoiged

IE Paste, drop, or click to\add files

Cancel Add single comment

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/add-suggestion.png

The result is this and the submitter can accept the change with a single click:

desserts/icecream.md

@@ -0,0 +1,9 @@

1 + # Vanilla iscream recipe

ﬁ bast 2 minutes ago - edited ~ Owner Author

Suggested change

1 - # Vanilla iscream recipe

1 + # Vanilla ice cream recipe

Commit suggestion = Add suggestion to batch

@

ﬁ Reply...

Resolve conversation

After accepting with “Commit suggestion”, the improvement gets added to the pull request.
How to modify a pull request to address the review comments

If the reviewer asks for changes, it is not necessary to close the pull request and later open a
new one. It can even be counter-productive to do so: This can fragment the discussion and
the history of the pull request and can make it harder to understand the context of the
changes.

A much better mechanism to recognize that pull requests are not implemented from a
specific commit to a specific branch, but always from a branch to a branch.

This means that you can make amendments to the pull request by adding new commits to the
same source branch. This way the pull request will be updated automatically and the
reviewer can see the new changes and comment on them.

The fact that pull requests are from branch to branch also strongly suggests that it is a good
practice to create a new branch for each pull request. Otherwise you could accidentally
modify an open pull request by adding new commits to the source branch.

Summary

« Our process isn't just about code now. It’s about discussion and working together to
make the whole process better.
 GitHub discussions and reviewing is quite powerful and can make small changes easy.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-suggestion.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-suggestion.png

How to contribute changes to repositories that belong to
others

In this episode we prepare you to suggest and contribute changes to repositories that belong
to others. These might be open source projects that you use in your work.

We will see how Git and services like GitHub or GitLab can be used to suggest modification
without having to ask for write access to the repository and accept modifications without
having to grant write access to others.

Exercise
£} Exercise preparation
Part of team/exercise room Following on your own

Maintainer (team lead):

« Create an exercise repository by generating from a template using this template:
https:/github.com/coderefinery/template-forking-workflow-exercise called
forking-workflow-exercise
« In this case we do not add collaborators to the repository (this is the point of this
example).
« Share the link to the newly created repository with your group.

Learners in exercise team: Fork the newly created repository (not the “coderefinery”
one) and then clone your fork (if you wish to work locally).

¢ Exercise: Collaborating within the same repository (25 min)

Technical requirements:

« If you create the commits locally: Being able to authenticate to GitHub

What is familiar from the previous workshop days:

Forking a repository (previous lesson)
Creating a branch (previous lesson)

Committing a change on the new branch (previous lesson)

« Opening and merging pull requests (previous lesson)

What will be new in this exercise:

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/browsing/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://github.com/coderefinery/template-forking-workflow-exercise

Opening a pull request towards the upstream repository.

Pull requests can be coupled with automated testing.

Learning that your fork can get out of date.

After the pull requests are merged, updating your fork with the changes.
Learn how to approach other people’s repositories with ideas, changes, and requests.

Exercise tasks:

1. Open an issue in the upstream exercise repository where you describe the change you
want to make. Take note of the issue number.

2. Create a new branch in your fork of the repository.

3. Make a change to the recipe book on the new branch and in the commit cross-
reference the issue you opened. See the walk-through below for how to do this.

4. Open a pull request towards the upstream repository.

5. Team leaders will merge the pull requests. For individual participants, the instructors
and workshop organizers will review and merge the pull requests. During the review,
pay attention to the automated test step (here for demonstration purposes, we test
whether the recipe contains an ingredients and an instructions sections).

6. After few pull requests are merged, update your fork with the changes.

7. Check that in your fork you can see changes from other people’s pull requests.

Help and discussion

Opening a pull request towards the upstream repository

We have learned in the previous episode that pull requests are always from branch to
branch. But the branch can be in a different repository.

When you open a pull request in a fork, by default GitHub will suggest to direct it towards
the default branch of the upstream repository.

This can be changed and it should always be verified, but in this case this is exactly what we
want to do, from fork towards upstream:

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks. Learn

more about diff comparisons here.
b they are different repositories - in this case good!

%1 base repository: cr-workshop-exercises/exercise ¥ base:main ™ € head repository: bast/exercise ¥ compare: ice-cream ¥

+ Able to merge. These branches can be automatically merged.

Pull requests can be coupled with automated testing

We added an automated test here just for fun and so that you see that this is possible to do.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/pull-request-form.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/pull-request-form.png

In this exercise, the test is silly. It will check whether the recipe contains both an ingredients
and an instructions section.

In this example the test failed:

bast commented 3 minutes ago Member

hope you like it!
@

O & vanilla ice cream recipe - 2aceBbft

Add more commits by pushing to the ice-cream branch on bast/exercise.

s
° All checks have failed Hide all checks

1 failing check

X Basic recipe checks / check (pull_request) Failing after... Details

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request ~ orview command line instructions.

Click on the “Details” link to see the details of the failed test:

Setup job
Run actions/checkout@v4

Set up Python

Test with pytest

] with exit code 1.
Post Set up Python
Post Run ac heckot

Complete job

How can this be useful?

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/check-details.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/check-details.png

« The project can define what kind of tests are expected to pass before a pull request can
be merged.
« Thereviewer can see the results of the tests, without having to run them locally.

How does it work?

« We added a GitHub Actions workflow to automatically run on each push or pull request
towards the main branch.

What tests or steps can you image for your project to run automatically with each pull
request?
How to update your fork with changes from upstream

This used to be difficult but now it is two mouse clicks.

Navigate to your fork and notice how GitHub tells you that your fork is behind. In my case, it
is 9 commits behind upstream. To fix this, click on “Sync fork” and then “Update branch”:

¥ main -~ F O Go to file +

This branch is 9 commits behind cr-workshop-exercises/exercise:main .

[l Contribute -~ O Syncfork ~ -eff——

I e This branch is out-of-dgte

79d9df9 - 18 minut DENe it

ﬁ Update branch to keep this e O omimies
branch up-to-date by syncifig 9

[commits from the upstres immit 18 minutes ago
repository.

md Learn mare about syncifg a ymmit 18 minutes ago
fork

[ymmit 18 minutes ago

mp Compare ymmit 18 minutes ago

m s ymmit 18 minutes ago

Update branch

m si ammit 18 minutes ago

M soups Initial commit 18 minutes ago

[LICENSE Initial commit 18 minutes ago

[README.md Initial commit 18 minutes ago

[check_recipes.py Initial commit 18 minutes ago

After the update my “branch is up to date” with the upstream repository:

https://github.com/coderefinery/recipe-book-template/blob/main/.github/workflows/check-recipes.yml
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/sync-fork.png

¥ main - F O Go to file +

This branch is up to date with cr-workshop-exercises/exercise:main .

I Contribute - > Syncfork -

How to approach other people’s repositories with ideas, changes, and
requests

Contributing very minor changes

Clone or fork+clone repository
Create a branch

Commit and push change

Open a pull request or merge request

If you observe an issue and have an idea how to fix it

Open an issue in the repository you wish to contribute to

Describe the problem

If you have a suggestion on how to fix it, describe your suggestion

Possibly discuss and get feedback

If you are working on the fix, indicate it in the issue so that others know that somebody is
working on it and who is working on it

Submit your fix as pull request or merge request which references/closes the issue

O Motivation

« Inform others about an observed problem
« Make it clear whether this issue is up for grabs or already being worked on

If you have an idea for a new feature

Open an issue in the repository you wish to contribute to

In the issue, write a short proposal for your suggested change or new feature
Motivate why and how you wish to do this

Also indicate where you are unsure and where you would like feedback

Discuss and get feedback before you code

Once you start coding, indicate that you are working on it

Once you are done, submit your new feature as pull request or merge request which
references/closes the issue/proposal

O Motivation

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork-after-update.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork-after-update.png

« Get agreement and feedback before writing 5000 lines of code which might be
rejected

« If we later wonder why something was done, we have the issue/proposal as reference
and can read up on the reasoning behind a code change

Summary

« This forking workflow lets you propose changes to repositories for which you have no
access.

« This is the way that much modern open-source software works.

« You can now contribute to any project you can view.

Interrupted work

O Objectives

« Learn to switch context or abort work without panicking.

Instructor note

« 10 min teaching/type-along
« 15 min exercise

O Keypoints

« There is almost never reason to clone a fresh copy to complete a task that you have in
mind.
« Sometimes Git suggests to “stash your changes”. What is this about?

Frequent situation: interrupted work

We all wish that we could write beautiful perfect code. But the real world is much more
chaotic:

« You are in the middle of a “Jackson-Pollock-style” debugging spree with 27 modified files
and debugging prints everywhere.

 Your colleague comes in and wants you to fix/commit something right now.

« What to do?

Git provides lots of ways to switch tasks without ruining everything.

& Ways to switch context

What strategies have you used in the past?

Have you created a new clone of the repository to leave your original directory intact?
Have you used git worktree ?

Option 1: Stashing
The stash is the first and easiest place to temporarily “stash” things.

o git stash push will put working directory and staging area changes away. Your code will
be same as last commit.

o git stash pop Will return to the state you were before.

e git stash list will list the current stashes.

e git stash push -m "message" is like the first, but will give it a message. Useful if it might
last a while.

e git stash push [-p] [filename] Will stash certain files files and/or by patches.

o git stash drop Will drop the most recent stash (or whichever stash you give).

The stashes form a stack, so you can stash several batches of modifications.

Exercise: Stashing

g Interrupted-1: Stash some uncommitted work

1. Make a change.

2. Check status/diff, stash the change with git stash , check status/diff again.

3. Make a separate, unrelated change which doesn’t touch the same lines. Commit this
change.

4. Pop off the stash you saved with git stash pop , and check status/diff.

5. Optional: Do the same but stash twice. Also check git stash 1ist . Can you pop the

stashes in the opposite order?

6. Advanced: What happens if stashes conflict with other changes? Make a change and
stash it. Modify the same line or one right above or below. Pop the stash back. Resolve
the conflict. Note there is no extra commit.

7. Advanced: what does git graph show when you have something stashed?

5:Yes you can. With git stash pop INDEX Yyou can decie which stash index to pop.

6: In this case Git will ask us to resolve the conflict the same way when resolving
conflicts between two branches.

7: It shows an additional commit hash with refs/stash .

ga Stashing all

Sometimes we want to stash files that are not yet tracked by git (i.e., have not been
add ed). How would we do that? Look at the man page using git help stash .

v Solution

By passing the option -a , we are telling git stash to take every file in our working

tree, including untracked and ignored files.

ga Comments

The option -m to add a message is optional. Why use it?

v Solution

By looking at the output of git stash 1ist , it will be much easier to determine which

stash we are interested in.

e Stash vs commit

In what sense are stashes similar to commits?

v Solution

Stashing is roughly equivalent to
““console
git switch -c tempbranch; git add -u; git commit -m 'temp commit'}).

In particular, stashes are identified as “commit ™ objects in the object
database,
and they are referenced by ‘refs/stash® and the reflog of the "stash" reference.

Option 2: Create branches

You can use branches almost like you have already been doing if you need to save some
work. You need to do something else for a bit? Sounds like a good time to make a feature
branch.

You basically know how to do this:

create a branch and switch to it

stage changes

commit them

back to main, continue your work there ...
continue again on "temporary'" where you left off

$ git switch --create temporary
$ git add PATHS

$ git commit

$ git switch main

$ git switch temporary

HoH R H® R

Later you can merge it to main or rebase it on top of main and resume work.
Storing various junk you don't need but don't want to get rid of

It happens often that you do something and don'’t need it, but you don’t want to lose it right
away. You can use either of the above strategies to stash/branch it away: using branches is
probably better because branches are less easily overlooked if you come back to the
repository in few weeks. Note that if you try to use a branch after a long time, conflicts might
get really bad but at least you have the data still.

Tooling and practices that you might find useful

O Objectives

- Abird’s eye view of git-related tooling
« Install and configure 1 tool of your choice so that you can start using it

Difftools and merge tools.

There are many file types for which the usual output of git diff can be from difficult to

read to just completely impossible to understand.

« For Jupyter notebooks: nbdime

« For Latex: Latexdiff (not git-related) and git-latexdiff. Latex is still a text-based format, but
a PDF-rendered view of the differences can be more readable.

« There are also tools for images (e.g., git-diff-image)

Automation: Git Hooks

Git can be configured to perform some tasks automatically when some events happen.
Most notable tasks:

« auto-formatting: is your code properly formatted? This is important because:
o proper formatting improves readability
o consistently using automatic formatting makes the output of git diff much more
informative (for easier code reviews) There are tools for every language you use:
o for Python: black
o for C/C++: clang-format
« Linting: there are automated tools that can spot bad practices in writing code
o for Python: pylint
o for C/C++: clang-tidy
o for bash shell scripts: shellcheck

https://nbdime.readthedocs.io/en/latest/
https://www.ctan.org/pkg/latexdiff
https://gitlab.com/git-latexdiff/git-latexdiff
https://github.com/ewanmellor/git-diff-image?tab=readme-ov-file
https://black.readthedocs.io/en/stable/
https://clang.llvm.org/docs/ClangFormat.html
https://pylint.readthedocs.io/en/stable/
https://clang.llvm.org/extra/clang-tidy/
https://www.shellcheck.net/

« Spellchecking (useful for documentation)
« compiling/building, deploying services or documentation
« Launch a test suite

Such tasks can be performed as part of a git hook. Git hooks are executable programs in the
.git/hooks/ directory.

The most commonly used is the pre-commit hook, which runs when you call git commit ,

before the commit message is created. Auto-formatting, linting tools and anything that is
quick enough can be run here.

g Try them out!

Install and/or configure some of the mentioned tooling that can be helpful for your daily
workflow.

Another hook typically used is post-receive. When it is configured on a remote repository, it
runs after a push. The post-receive hook is typically used to start the run of a test suite, or to
notify other services that the push happened.

Automation: GitHub Actions, GitLab CI/CD (et similia)

Automation platforms like, e.g. GitHub actions and GitLab CI/CD build on top of the idea of
the post-receive hook, and are commonly used for (including but not limited to):

« run a test suite and present the results in a web interface;

« build the software and make it available for download:;
 build and deploy documentation.

Merge and beyond

Git exposes many commands that can be used to add the work done in a branch into another
branch.

For the following demonstration, you can clone a toy repository created on purpose:

$ git clone https://github.com/mmesiti/merge-fu.git
$ cd merge-fu

Have a look at the branch structure:

$ git graph # alias for git log --oneline --all --graph --decorate

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/

For what follows, we do not want to see all the branches all the time, so we want to define a
git g1 alias locally without the --a11 flag:

$ git config alias.gl --oneline --graph --decorate

so that we can use it like this:

$ git gl branch-1 branch-2

Merge

git merge is the classic command that is used join (potentially more than 2) branches

together.
It will create an additional commit, called the merge commit.

When Git cannot determine unambiguously how to merge two versions of a given file, it will
produce a conflict.

Solving conflicts requires some practice and typically some thought.

Complex conflicts can be made easier to understand by configuring git to show also the
version in the merge base in addition to the two conflicting versions:

git config --global merge.conflictstyle diff3

Using a merge tool can also help when there are large change sets to merge. Please refer to
the documentation for more information.

Merge Conflict and abort

Let us now try to merge branch-1 into branch-2 . We first need to create the local branches

that match the remote ones:

$ git branch branch-1 origin/branch-1
$ git branch branch-2 origin/branch-2

We can check what are the differences between the two branches:

https://www.git-scm.com/docs/git-merge-base
https://www.git-scm.com/docs/git-mergetool

$ git diff branch-1 branch-2
diff --git a/text-file.txt b/text-file.txt
index b7062f5..celf6b8 100644
--- a/text-file.txt
+++ b/text-file.txt
@@ -1,4 +1,4 @@

1st line

2nd line

3rd line

-4th line on branch 1
+4th line on branch 2

ga Predict conflicts

Will the merge between branch-1 and branch-2 cause a conflict? Why?

Unfortunately, yes. Both versions have appended lines at the end, and Git cannot
determine in which order they need to be.

First of all, to do the merge we need to switch to branch-2 :

$ git switch branch-2

We will get a conflict:

$ git merge branch-1

Auto-merging text-file.txt

CONFLICT (content): Merge conflict in text-file.txt

Automatic merge failed; fix conflicts and then commit the result.

We can check the content of text-file.txt :

$ cat text-file.txt
1st line

2nd line

3rd line

<<<<<<< HEAD

4th line on branch 2
[ITI11] 874ebed

4th line

4th line on branch 1
>>>>>>> pranch-1

If we know how to solve it, we can modify the file, stage it and commit.

But what to do in the unhappy situation where we are not sure how to proceed? We stop the
merge with the command

$ git merge --abort

The --abort option is a useful “handbrake” that works also with other commands.

No conflicts, but still wrong

There are cases where a conflictless git merge can introduce a bug.

For example, switch to the branch python-example :

$ git switch python-example

Check the content of the example.py file:

$ cat example.py
def addi(n):
res = n

print("This function adds 1 to the input")

return res

This is obviously wrong: the function is not adding 1.

Fortunately, we have already two possible fixes, by Alice and Bob. One is on branch python-

example-fix-1 :

$ git switch python-example-fix-1
$ cat example.py
def addi(n):

res =n+ 1

print("This function adds 1 to the input")

return res

And another is on branch pythyon-example-fix-2 :

$ git switch python-example-fix-2
$ cat example.py
def addi(n):

res = n

print("This function adds 1 to the input")

return res + 1

They are just one commit away from python-example :

$ git gl python-example-fix-1 python-example-fix-2

* 4d8b65f (origin/python-example-fix-2, python-example-fix-2) fix addil

| * 0392b16 (origin/python-example-fix-1, python-example-fix-1) fix addil

|/

* ff35a6e (HEAD -> python-example, origin/python-example) add python example
* 874ebeO® (origin/main, origin/HEAD, main) First commit

Excellent! We will merge them both into python-example , to make everybody feel like their

work is appreciated. We switch to the python-example branch:

$ git switch python-example
Switched to branch 'python-example'
Your branch is up to date with 'origin/python-example'.

We merge first python-example-fix-1 :

$ git merge python-example-fix-1
Updating ff35a6e..0392b16
Fast-forward
example.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

This merge is a fast forward: python-example-fix-1 is a direct descendant of the python-

example SO python-example can be just moved forward without too much thinking.

We then merge python-example-fix-2 :

$ git merge python-example-fix-2
Auto-merging example.py
Merge made by the 'ort' strategy.
example.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

The file is now wrong, though:

$ cat example.py
def addi(n):
res =n+ 1

print("This function adds 1 to the input")

return res + 1

We are adding 1 twice!
This is obviously a contrived example. But it shows that:

1. conflicts might be annoying, but are actually a good thing;
2. merges should always be checked in some way, by a human and/or with an automatic test
suite.

To fix this, we can undo the commit in one of the ways we have already seen.

g Optional: a merge commit

When reverting a merge commit, it is not clear which is the parent commit to which we
want to revert.

Use the -m option (--mainline) to select the version you want to revert to. See the

documentation for git revert .

Cherry-Pick

There might be a commit in a branch that we want to use, without merging the whole branch
on which it was created.

For this we will consider the branches proverbs and ‘good-and-bad-commits’:

$ git gl proverbs good-and-bad-commits

The branch that contains our work is proverbs , where we started a collection of popular
pieces of wisdom. Perhaps the branch good-and-bad-commits contains some useful work? We
can check it with git 1og -p , which will show all the changes along with the commit

messages:

https://www.git-scm.com/docs/git-revert#Documentation/git-revert.txt--mparent-number

$ git log --oneline -p proverbs..good-and-bad-commits | cat

diff --git a/wisdom.txt b/wisdom.txt
index b3c8fac..ec51263 100644
--- a/wisdom. txt

+++ b/wisdom. txt
@@ -4,3 +4,6 @@ Early to bed,
early to rise,

makes a man wealthy,

healthy, and wise.
+
+
+I HATE VERSION CONTROL'!
82cfbl5 Add proverb
diff --git a/wisdom.txt b/wisdom.txt
index c343ccb..b3c8fac 100644
--- a/wisdom. txt
+++ b/wisdom. txt
@@ -1 +1,6 @@

01d Proverbs
+
+Early to bed,
+early to rise,
+makes a man wealthy,
+healthy, and wise.

here proverbs..good-and-bad-commits is a way of specifying the range of commits above
merge base on the branch good-and-bad-commits .

Once we see the content of each commit, we become interested in applying the second-last
commit on good-and-bad-commits to the proverb branch.

To do so, we switch to the proverb branch

$ git switch proverb

and use git cherry-pick with the commit we want to apply

$ git cherry-pick good-and-bad-commits~

Auto-merging wisdom. txt

CONFLICT (content): Merge conflict in wisdom.txt

error: could not apply 82cfbil5... Add proverb

hint: After resolving the conflicts, mark them with

hint: "git add/rm <pathspec>", then run

hint: "git cherry-pick --continue".

hint: You can instead skip this commit with "git cherry-pick --skip".
hint: To abort and get back to the state before "git cherry-pick",
hint: run "git cherry-pick --abort".

We have a conflict, but the resolution in this case is trivial.

Rebase

git rebase is an alternativeto git merge that typically leads to a clearer commit history.
In particular:

« an additional merge commit is not necessary
« the commit graph has no bifurcations

The rebase command will try to reapply all the commits on the current branch on top of

another branch (which will be left untouched), and then point the current branch at the last
commit.

O The Golden Rule of Rebase

Do not be rude: git rebase rewrites history. Be very careful when rebasing public
branches!

Rebase demo

For this demo we will switch on branch rebase-me

$ git switch rebase-me

and try to rebase it onto the branch rebase-onto-this , which we need to create locally from

the remote branch, with this command:

$ git branch rebase-onto-this origin/rebase-onto-this

We can have a look at the branch structure:

$ git gl rebase-me rebase-onto-this

* 3b514df (rebase-onto-this) Add line at end

* e459dcd Add an intermezzo

* a4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1

| * d30163f (HEAD -> rebase-me) 3rd commit - on branch rebase-me
| * 98f36f0 2nd commit - on branch rebase-me

|/

* 874ebe@® (origin/main, origin/HEAD, main) First commit

We see that:

 thereis a bifurcation at s74ebeo

« our current branch (rebase-me) has 2 commits above the merge base

« the branch we want to rebase on (rebase-onto-this) has 3 commits above the merge
base.

To be able to compare the end result with the initial situation, we create a “backup branch”
as a bookmark:

$ git branch rebase-me-original rebase-me

We now can do the proper rebase. Make sure we are on the rebase-me branch:

$ git branch

branch-1

branch-2
good-and-bad-commits
main

proverbs

rebase-me
rebase-me-original
rebase-onto-this

then we invoke the rebase command to rebase the current branch (rebase-me) onto rebase-

onto-this :

$ git rebase rebase-onto-this

This command will try to apply all the commits on the current branch (rebase-me) onto the
branch rebase-onto-this , one at a time. For each commit we might get a conflict, which is
the first thing

Auto-merging text-file.txt

CONFLICT (content): Merge conflict in text-file.txt

error: could not apply 98f36f0... 2nd commit - on branch rebase-me

hint: Resolve all conflicts manually, mark them as resolved with

hint: "git add/rm <conflicted_files>", then run "git rebase --continue".

hint: You can instead skip this commit: run "git rebase --skip".

hint: To abort and get back to the state before '"git rebase", run '"git rebase --abort".
Could not apply 98f36f0... 2nd commit - on branch rebase-me

We can resolve this conflict in the way we please.

$ # edit text-file.txt

Once we are done, we can add our changes:

$ git add text-file.txt

and tell rebase to continue to the next commit:

$ git rebase --continue

When rebase can automatically merge without commits, it will not ask for our intervention,
but when there are conflicts it will stop and ask us to solve them, git add the results and

then use git rebase --continue .

After all the commits on the current branch are processed, we will get a linear commit
history for the current branch:

$ git log --oneline

f5b0417 (HEAD -> rebase-me) 3rd commit - on branch rebase-me
3b514df (rebase-onto-this) Add line at end

e459dcd Add an intermezzo

a4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1
874ebe® (origin/main, origin/HEAD, main) First commit

We can compare the new commit history with the original position of the branch:

git gl rebase-me rebase-me-original

f5b0417 (HEAD -> rebase-me) 3rd commit - on branch rebase-me

* 3b514df (rebase-onto-this) Add line at end

* e459dcd Add an intermezzo

* ad4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1

| * d30163f (rebase-me-original) 3rd commit - on branch rebase-me
| * 98f36f0 2nd commit - on branch rebase-me

|/

* 874ebeO® (origin/main, origin/HEAD, main) First commit

As merge and cherry-pick , rebase hasa --abort option.

If we are not satisfied by the result of the rebase after it completed, we can use git reflog
rebase-me to determine the last satisfactory commit, and use git reset to move the branch

to point there again.

Sometimes, the same conflicts will need to be solved over and over in the same way. In such a
situation, the rerere command (re use re corded re solution) may come in handy.

Interactive rebase

git rebase has an interactive mode (that can be entered using the -i flag, or --
interactive) that can be used to perform complex manipulations of the commit history in a

range.

It is very powerful, and it is also used to clean the commit history of a feature branch before
making a pull request (in this case, there are lower chances for conflicts because we rebase
on a commit that is already an ancestor of the current branch, e.g. git rebase -i HEAD~3).

It is possible to perform the following actions on any commit in the range:

« pick: keep it in the history;

 drop: dropt it from the history;

« reword: change only the commit message

« squash: remove the commit, but attribute its changes to the previous picked commit.

« edit: change the files and the commit message (even create new commits in the meantime
- the opposite of squashing)

. exec: pause the rebasing and run a command there (e.g., a test suite)

More information can be read from the manual.

g Interactive rebase on another branch

You can practice interactive rebase with

$ git switch rebase-me
$ git reset reset --hard d30163f
$ git rebase -i rebase-onto-this

Quick reference

Other cheatsheets

See the git-intro cheatsheet for the basics.

+ Interactive git cheatsheet

https://git-scm.com/book/en/v2/Git-Tools-Rerere
https://git-scm.com/docs/git-rebase#_interactive_mode
https://coderefinery.github.io/git-intro/reference/
http://www.ndpsoftware.com/git-cheatsheet.html

« Very detailed 2-page git cheatsheet
Glossary

forge

A web-based collaborative software platform for both developing and sharing code (from
wikipedia). Common example of forges are github.com, gitlab.com, codeberg.org, and
self-hosted instances of GitLab or Forgejo.

remote

Roughly, another git repository on another computer. A repository can be linked to several
other remotes.

push

Send a branch from your current repository to another repository
fetch

Update your view of another repository
pull

Fetch (above) and then merge
origin

Default name for a remote repository.
origin/NAME

A branch name which represents a remote branch.
main

Default name for main branch.
merge

Combine the changes on two branches.
conflict

When a merge has changes that affect the same lines, git can not automatically figure out
what to do. It presents the conflict to the user to resolve.

issue
Feature of web repositories that allows discussion related to a repository.
pull request

A GitHub/Gitlab feature that allows you to send a code suggestion using a branch, which
allows one-button merging. In Gitlab, called “merge request”.

git hook

Code that can run before or after certain actions, for example to do tests before allowing
you to commit.

https://aaltoscicomp.github.io/cheatsheets/git-the-way-you-need-it-cheatsheet.pdf
https://en.wikipedia.org/wiki/Forge_(software)

bare repository

A copy of a repository that only is only the .git directory: there are no files actually

checked out. Directory names usually like something.git
working tree

The directory where the files of your project live, excluding the .git subdirectory. It
represents all that non git-aware applications can interact with, and it exists
independently of git, but it can be manipulated by git

index
Also called sometimes “staging area”. A version of a file is added to it with git add .
object

A git object is one of 4 kinds: a commit (representing a commit or a stash), a tree
(representing a directory), a blob (representing a file) or a tag.

Commands we use

This excludes most introduced in the git-intro cheatsheet.

Setup:

e git clone URL [TARGET-DIRECTORY] : Make a copy of existing repository at <url>,

containing all history.

Status:

o git status : Same as in basic git, list status
e git remote [-v] : List all remotes
e git graph : see a detailed graph of commits. Create this command with git config --

global alias.graph "log --all --graph --decorate --oneline"

General work:

e git switch BRANCH-NAME : Make a branch active.

e git push [REMOTE-NAME] [BRANCH:BRANCH] : Send commits and update the branch on the
remote.

e git pull [REMOTE-NAME] [BRANCH-NAME] : Fetch and then merge automatically. Can be
convenient, but to be careful you can fetch and merge separately.

e git fetch [REMOTE-NAME] : Get commits from the remote. Doesn’t update local branches,
but updates the remote tracking branches (like origin/NAME).

e git merge [BRANCH-NAME] : Updates your current branch with changes from another
branch. By default, merges to the branch is is tracking by default.

e git remote add REMOTE-NAME URL :Adds a new remote with a certain name.

https://coderefinery.github.io/git-intro/reference/

List of exercises

Full list

This is a list of all exercises and solutions in this lesson, mainly as a reference for helpers and
instructors. This list is automatically generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

Instructor guide

Schedule

« 08:50: Soft start

« 09:00: Necessary introductions, forming groups.
« 09:15: Recap on Git basics

« 09:40: Beyond add and commit: undoing mistakes
« 10:00: Inspecting history

« 10:30: Break

« 10:50: Concepts around collaboration

« 11:00: Collaborating within the same repository

« 11:30: Demo: Code review

« 11:40: Demo: How to contribute changes to repositories that belong to others
« 11:50: Tooling and practices

« 12:00: Merge and Beyond

o 12:10: Free practice and discussion

Why I modified this lesson

The main change is that | am adding a little more content.

My impression is that in CodeRefinery workshops the pace is a bit relaxed, and more could be
done in a in-person setting (which is the plan here).

| would not let attendees work on their own on an exercise for 30 minutes without feedback,
so | changed the times of the exercise lessons to also include instructor feedback.

Another change is that | try not to be forge-specific. One reason is that the expected
audience typically has access to GitLab instances, and also someone might be concerned
about handing all their code to a Microsoft-owned platform, so | am adding codeberg.org as
an alternative. Another reason is that actually the features of every forge typically evolve
over time. Looking at a variety of forges at a single time point might give an idea of the
distribution of features of a single forge at different points in time.

Audience intended for this course

There seems to be quite a demand for an intermediate Git course at KIT.

The audience of this course is expected to be slightly more familiar with git than target of the
original CodeRefinery workshops (which start on day 1 assuming no git knowledge - so |
think), and definitely more advanced than the audience that would attend a Software
Carpentry lesson on Git.

At KIT, we do offer the software carpentry curriculum already twice a year, complete
beginners should attend those courses instead of coming to this course.

Intended prerequisites
At the beginning of this lesson, learners:

« Must know the basic git commands (status/diff/add/commit)
Should be comfortable with the command line

Should Be familiar with the usual git workflow (pull/add/commit/push)

Probably already have used github or similar

Should have a way to authenticate to the chosen forge

Intended learning outcomes

By the end of this lesson, learners should:

« Understand the concept of remotes
« Be able to describe the difference between local and remote branches
« Be able to describe the difference between centralized and forking workflows
« Be able to work efficiently with forges:
o Know how to use pull requests or merge requests to submit changes to another
projects
o Know how to reference issues in commits or pull/merge requests and how to auto-
close issues
o Know how to update a fork
« Be able to contribute in code review as submitter or reviewer
« Know the difference between merge and rebase, in particular:
o Know the golden rule of rebase
o What force push means (what are the consequences)
o What are the advantages of a linear commit history
« Choose the right tool for fixing common problems with Git (I know this is a little vague)/
This includes:
o issues with lost data when using git add/checkout/restore
o cleaning their commit history if they so wish (rebase)
o deal with large binary files (Ifs/annex)
o deal with large repositories (partial cloning)
o using long complex commands efficiently (aliases)
o use git to analyse development history (pickaxe, blame, bisect)

o

o

re-discover which branches they had been working on before

dealing with nested repositories (existence of submodules)

when you do not want to add/commit part of the changes you made to a file, without
having to undo (potentially big) changes in your editor (-p)

collaboration between windows and *nix users (line ending issues)

Instructor guide - original

Schedule - Original

o 08:50 - 09:00: Soft start and icebreaker question
« 09:00 - 09:15: Recap Git, any HedgeDoc questions to highlight
e 09:15 - 09:30: Concepts around collaboration

o

o

Explain terms: Pull, push, clone, fork. Focus on pull and not fetch.
Focus more on clone and less on generating from templates and importing.

e 09:30 - 11:00: Centralized workflow

o

o

o

o

o

9:30 - 9:45: Explain concepts

9:45 - 9:55: Break

9:55 - 10:00: Inform clearly what is expected outcome

10:00 - 10:30: Exercise

10:30 - 11:00: Instructors go through the exercise. Discussion and answering
questions

« 11:00 - 12:00: Lunch Break
o 12:00 - 13:10: Distributed version control and forking workflow

o

o

o

o

12:00 - 12:15: Concepts and what are exercise outcomes
12:15 - 12:45: Exercise
12:45 - 12:55 Break

12:55 - 13:10: Instructors go through excercises. Discussion and answering questions

13:10 - 13:30: How to contribute changes to somebody else’s project and Q&A

Why we teach this lesson - original

In order to collaborate efficiently using Git, it’s essential to have a solid understanding of how

remotes work, and how to contribute changes through pull requests or merge requests. The

git-intro lesson teaches participants how to work efficiently with Git when there is only one

developer (more precisely: how to work when there are no remote Git repositories yet in the

picture). This lesson dives into the collaborative aspects of Git and focuses on the possible

collaborative workflows enabled by web-based repository hosting platforms like GitHub.

This lesson is meant to directly benefit workshop participants who have prior experience

with Git, enabling them to put collaborative workflows involving code review directly into

practice when they return to their normal work.

https://coderefinery.github.io/git-intermediate/remotes/
https://coderefinery.github.io/git-intermediate/centralized/
https://coderefinery.github.io/git-intermediate/centralized/#exercise-preparation
https://coderefinery.github.io/git-intermediate/distributed/
https://coderefinery.github.io/git-intermediate/distributed/#exercise-preparation
https://coderefinery.github.io/git-intermediate/contributing/
https://coderefinery.github.io/git-intro/

For novice Git users (who may have learned a lot in the git-intro lesson) this lesson is
somewhat challenging, but the lesson aims to introduce them to the concepts and give them
confidence to start using these workflows later when they have gained some further
experience in working with Git.

Intended learning outcomes

By the end of this lesson, learners should:

« Understand the concept of remotes

« Be able to describe the difference between local and remote branches

« Be able to describe the difference between centralized and forking workflows

« Know how to use pull requests or merge requests to submit changes to another projects

+ Know how to reference issues in commits or pull/merge requests and how to auto-close
issues

« Know how to update a fork

« Be able to contribute in code review as submitter or reviewer

Interesting questions you might get

o If participants run git graph they might notice origin/Heap . This has been omitted from

the figures to not overload the presentation. This pointer represents the default branch of
the remote repository.

Timing

« The centralized collaboration episode is densest and introduces many new concepts, so at
least an hour is required for it.

« The forking-workflow exercise repeats familiar concepts (only introduces forking and
distributed workflows), and it takes maybe half the time of the first episode.

« The “How to contribute changes to somebody else’s project” episode can be covered
relatively quickly and offers room for discussion if you have time left. However, this
should not be skipped as this is perhaps the key learning outcome.

Preparing exercises

Exercise leads typically prepare exercise repositories for the exercise group (although the
material speaks about “maintainer” who can also be one of the learners). Preparing the first
exercise (centralized workflow) will take more time than preparing the second (forking
workflow). Most preparation time is not the generating part but will go into communicating
the URL to the exercise group, communicating their usernames, adding them as
collaborators, and waiting until everybody accepts the GitHub invitation to join the newly
created exercise repository.

Live stream:

« Create the centralized exercises in an organization (not under your username) so that you
can give others admin access to add collaborators. Also this way you can then fork
yourself if needed.

« For CR workshops, the exercises were placed under https:/github.com/cr-workshop-
exercises. The instructors or team leads need to have owner status in the organization in
order to invite people.

« We have created two versions of each a day in advance to signal which one might end up
being discussed on recording/stream:

o centralized-workflow-exercise-recorded
o centralized-workflow-exercise
o forking-workflow-exercise-recorded

o forking-workflow-exercise

« Protect the default branch of the two centralized-* repositories.

+ We create a organization team, stream-exercise-participants . The centralized workflow
exercise repos have this team added as a collaborator (not forking - they fork so they
don’t need write access there).

« We have collected usernames of people who want to contribute via issues on GitHub.
Make a fifth repository, access-requests , create a sample access request issue there, and
have learners make a new issue in that repository. The day/morning before the day of the
lesson the instructor or team leader now has to invite the learners to the team. Three
steps: 1. copy the learners GitHub username from the issue 2. go to team member page,
example linked here and invite that username to the team (this means first clicking invite
and then scrolling down to click the “add username to ...” button. This sends an email to
that users email that is connected to their GitHub account. 3. In the issue, copy following
text (or similar) to the issue and “close with comment”:

We have added you to the CodeRefinery exercise repository.
What you should do before the exercise starts:

You will get an invitation from GitHub to your email address (that GitHub knows
about). Please accept that invitation so that you can participate in the
collaborative exercise.

To make sure you don't get too many emails during the exercise, don't forget to
"unwatch" both https://github.com/cr-workshop-exercises/centralized-workflow-
exercise and https://github.com/cr-workshop-exercises/centralized-workflow-
exercise-recorded.

To "unwatch", go to the repository and click the "Unwatch" button (top middle of
the screen) and then select "Participating and @mentions".

« Why a fifth repository? So that learners don’t get emails from all other access requests
once they get added to the team

« Example email requesting learners to join

« Example issue comment

https://github.com/cr-workshop-exercises
https://github.com/cr-workshop-exercises
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants/members
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants/members
https://coderefinery.github.io/2024-03-12-workshop/communication/#2024-03-12-exercise-preparation-for-learners-without-own-group
https://github.com/cr-workshop-exercises/access-requests/issues/41

Typical pitfalls
Difference between pull and pull requests

The difference between pull and pull requests can be confusing, explain clearly that pull
requests or merge requests are a different mechanism specific to GitHub, GitLab, etc.

Pull requests are from branch to branch, not from commit to branch

The behavior that additional commits to a branch from which a pull request has been created
get appended to the pull request needs to be explained.

Other practical aspects

« Inin-person workshops participants really have to sit next to someone, so that they can
see the screens. From the beginning.
o Emphasize use of git graph alot, just like in the git-solo lesson.

