
 / Collabora�ve distributed version control @ KIT documenta�on

Collaborative distributed version control and
troubleshooting @ KIT

This material was originally developed by CodeRefinery. The original material is visible here and
here. Pull requests and fixes are welcome!

The content of this workshop can be roughly divided in two parts.

Effective collaborative software development

How can we share work on a repository of files with others on the internet?

Share an archive of the directory using email or using some file sharing service: This
would lead to many back and forth emails and would be difficult keep all copies
synchronized.
One person’s repository on the web: allows one person to keep track of more projects,
gain visibility, feedback, and recogni�on.
Common repository for a group: everyone can directly update the same repository. Good
for small groups.
Forks or copies with different owners: anyone can suggest changes, even without
advance permission. Maintainers approve what they agree with.

Being able to share more easily (going down the above list) is transforma�ve, because it allows
projects to scale to a new level. This can’t be done without proper tools.

We will discuss the centralized as well as the forking workflows.
During the workshop, you will collaborate in small groups using the same forge.
Some of the details might not apply to the forge you are using, please focus on the general
ideas.

Fixing problems using Git, and fixing Git problems

Version Control has been some�mes described as “an unlimited undo bu�on”, that offers
important ways to tackle problems and gain insight during development (typically, so�ware
development), by inspec�ng the history and the state of all the files involved.

Of course, using a new tool can introduce addi�onal complexity on top of an already
complex workflow. Being in control of the tool can guarantee a much produc�ve and stress-
free experience, especially when collabora�ng with other people.

https://coderefinery.org/
https://coderefinery.github.io/git-intermediate/
https://coderefinery.github.io/git-intro/

Expected learning outcomes

 Objec�ves

1. Be able to collaborate with others on remote repositories hosted on Git Forges (e.g.,
GitHub, GitLab and other similar services);

2. Be able to use git tools to diagnose and fix problems in code or documents (the
content of the repository);

3. Be able to fix common issues encountered when devia�ng from the simplest workflow
(pull - add - commit - push);

4. Bonus point: fix issues in this repository

⚙ Prerequisites

1. Basic understanding of Git.
2. You need an account on a “Forge”, e.g.

github.com
gitlab.com
gitlab.kit.edu
codeberg.org

Quick recap on Git Basics: Commits and Branches

The first and most basic task to do in Git is record changes using commits.
We will record changes in two ways:

on a new branch (which supports mul�ple lines of work at once)
directly on the “main” branch (which happens to be the default branch here).

 Objec�ves

Record new changes to our own copy of the project.
Understand adding changes in two separate branches.
See how to compare different versions.

Glossary

commit: Snapshot of the project at a certain point in �me, gets a unique iden�fier (called
a hash, e.g. c7f0e8bfc718be04525847fc7ac237f470add76e). Usually you can be lazy and use
only the first 4 characters wherever a commit hash is needed.
branch: Independent development line. The main development line is o�en called main .
tag: A pointer to one commit, to be able to refer to it later. Like a “commemora�ve plaque”
that you a�ach to a par�cular commit (e.g. phd-printed or paper-submitted).

https://en.wikipedia.org/wiki/Forge_(software)
https://github.com/
https://gitlab.com/
https://gitlab.kit.edu/
https://codeberg.org/
https://coderefinery.github.io/git-intro/reference/#term-commit
https://coderefinery.github.io/git-intro/reference/#term-hash
https://coderefinery.github.io/git-intro/reference/#term-branch
https://coderefinery.github.io/git-intro/reference/#term-tag

repository: A copy of the project, contains all data and history (commits, branches, tags).
forge: a web-based collabora�ve so�ware pla�orm for both developing and sharing code (from
wikipedia), e.g. GitHub or GitLab
cloning: Copying the whole repository - the first �me, e.g. downloading it on your
computer. It is not necessary to download each file one by one.
forking: Cloning a repository (which is typically not yours) on a forge - your copy (fork)
stays on the forge and you can make changes to your copy.

Merging

What if two people, at the same �me, make two different changes? Git can merge them together
easily. Image created using h�ps://gopherize.me/ (inspira�on).

Exercise: Practice creating commits and branches

⚙ How to prepare the repository

Fork on github.com Clone and push to new repository

1. Go to the repository view on GitHub h�ps://github.com/coderefinery/recipe-book
2. First, on GitHub, click the bu�on that says “Fork”. It is towards the top-right of

the screen:

https://coderefinery.github.io/git-intro/reference/#term-repository
https://en.wikipedia.org/wiki/Forge_(software)
https://coderefinery.github.io/git-intro/reference/#term-clone
https://coderefinery.github.io/git-intro/reference/#term-fork
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
https://github.com/coderefinery/recipe-book

We offer three different paths of how to do this exercise:

on GitHub
using VSCode
using the command line

✍ Exercise: Prac�ce crea�ng commits and branches (20 min)

1. Make sure that you now work on your fork of the recipe-book repository
(USER/recipe-book , not coderefinery/recipe-book)

2. First create a new branch and then add a recipe to the branch and commit the change.
3. In a new commit, modify the recipe you just added.
4. Switch to the main branch and modify a recipe there.
5. Browse the network and locate the commits that you just created (“Insights” ->

“Network”).
6. Compare the branch that you created with the main branch. Can you find an easy

way to see the differences?
7. Can you find a way to compare versions between two arbitrary commits in the

repository?
8. Try to rename the branch that you created and then browse the network again.
9. Try to create a tag for one of the commits that you created (on GitHub, create a

“release”).

3. You should shortly be redirected to your copy of the repository
YOUR_USER_NAME/recipe-book.

At all �mes you should be aware of if you looking at your repository or the
CodeRefinery upstream repository.

Your repository: h�ps://github.com/USERNAME/recipe-book
CodeRefinery upstream repository: h�ps://github.com/coderefinery/recipe-book

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forking.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forking.png
https://coderefinery.github.io/git-intro/reference/#term-upstream

The solu�on below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.

Solution and walk-through

(1) Make sure you are on your fork

You want to see your username in the URL and you want to see the “forked from …” part.

(2) Create a branch and add a recipe to the branch

A recipe template is below. This format is called “Markdown”, but it doesn’t ma�er right now.
You don’t have to use this par�cular template.

There is a main branch that is default. We want to create a different branch for our new
commit, because we will merge it later. Commit is the verb to describe recording more
changes, and also the name of the thing you make. A commit is iden�fied by something such
as 554c187 .

Recipe name

Ingredients

- Ingredient 1

- Ingredient 2

Instructions

- Step 1

- Step 2

GitHub VS Code Command line

1. Where it says “main” at the top le�, click, enter a new branch name new-recipe ,
click on the offer to create the new branch (“Create branch new-recipe from main”).

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork1.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork1.png
https://coderefinery.github.io/git-intro/reference/#term-branch
https://coderefinery.github.io/git-intro/reference/#term-commit

(3) Modify the recipe with a new commit

(4) Switch to the main branch and modify a recipe there

2. Change to some sub-directory, for example sides
3. Make sure you are s�ll on the new-recipe branch (it should say it at the top), and

click “Add file” → “Create new file” from the upper right.
4. Enter a filename where it says “Name your file…”, with a .md at the end. Example:

mixed-nuts.md .
5. Enter the recipe. You can use the template above.
6. Click “Commit changes”
7. Enter a commit message. Then click “Commit changes”.

You should appear back at the file browser view, and see your new recipe there.

GitHub VS Code Command line

This is similar to before, but we click on the exis�ng file to modify.

1. Click on your new recipe, for example mixed-nuts.md .
2. Click the edit bu�on, the pencil icon at top-right.
3. Follow the “Commit changes” instruc�ons as in the previous step.

GitHub VS Code Command line

1. Go back to the main repository page (your user’s page).
2. In the branch switch view (top le� above the file view), switch to main .

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-branch.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-branch.png

(5) Browse the commits you just made

Let’s look at what we did. Now, the main and new-recipe branches have diverged: both
have some modifica�ons. Try to find the commits you created.

(6) Compare the branches

Comparing changes is an important thing we need to do. When using the GitHub view only,
this may not be so common, but we’ll show it so that it makes sense later on.

(7) Compare two arbitrary commits

This is similar to above, but not only between branches.

3. Modify another recipe that already exists, following the pa�ern from above. Don’t
modify the one you just created (but it shouldn’t even be visible on the main
branch).

GitHub VS Code Command line

Insights tab → Network view (just like we have done before).

GitHub VS Code Command line

Next to the branch name switcher, click on “Branches” to get an overview.

Another way to compare branches or commits on GitHub is to adjust the following URL:
https://github.com/USER/recipe-book/compare/VERSION1..VERSION2

Replace USER with your username and VERSION1 and VERSION2 with a commit hash or
branch name. Please try it out.

GitHub VS Code Command line

Like above, one can compare commits on GitHub by adjus�ng the following URL:
https://github.com/USER/recipe-book/compare/VERSION1..VERSION2

(8) Renaming a branch

(9) Creating a tag

Tags are a way to mark a specific commit as important, for example a release version. They
are also like a s�cky note, but they don’t move when new commits are added.

Discussion

In this part, we saw how we can make changes to our files. With branches, we can track
several lines of work at once, and can compare their differences.

Replace USER with your username and VERSION1 and VERSION2 with a commit hash or
branch name. Please try it out.

GitHub VS Code Command line

Branch bu�on → View all branches → three dots at right side → Rename branch.

GitHub VS Code Command line

Click on the branch switcher, and then on “Tags”, then on “View all tags”, then “Create a
new release”:

What GitHub calls releases are actually tags in Git with addi�onal metadata. For the
purpose of this exercise we can use them interchangeably.

https://coderefinery.github.io/git-intro/reference/#term-branch
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-tag.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/github-create-tag.png

You could commit directly to main if there is only one single line of work and it’s only
you.
You could commit to branches if there are mul�ple lines of work at once, and you don’t
want them to interfere with each other.
Tags are useful to mark a specific commit as important, for example a release version.

Beyond add and commit: undoing mistakes

Most git users will typically use pull , add , commit and push and these 4 commands will
perform >95% of the opera�ons needed.

To be in control of Git, it is beneficial to know at least how to undo these commands.

 Objec�ves

Undo git add
Undo git commit
Understand that there are many states, and the complexity that this entails

Git offers you many versions of any file in the repository:

the one in the working tree
the one in the index (the index is also called “staging area”)
as many versions as there are commits.

The commi�ed versions cannot be changed, but new commits can be created, and the
versions in the working tree and in the index can be overwri�en.

As a result, there can be many commands that are used to copy one version of a file into
another.

The 3 kinds of states of a file in Git

The different versions of a file in Git and the commands that can be used to copy them into each
other.

The 3 Kinds of State of a file in Git - Table version

from \ to Working Tree Index HEAD

Working Tree commit -a
add commit -a

Index restore commit

<commit>
checkout
reset –hard
restore –source <…>

checkout
reset –hard
reset (–mixed)
restore (–source <…>) –staged

checkout
reset –hard
reset (–mixed)
reset –so�

Undoing git add

Undoing git add <path> typically means either to remove the file from the index completely,
but leaving it in the working tree or to recover the previous state of a file in the index . This
might not be always possible, but in most cases the previous state is the one in the last
commit (HEAD).

Undoing git add

Problem Solu�on

File should not be tracked at all git rm --cached <filename>

Changes to file should not go
in the next commit git restore --staged <filename>

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/git-trinity.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/git-trinity.png

Undoing git commit

The commit command cannot actually be undone completely, since it created another
immutable object in the git repository.

Prac�cally, there are some different effects of git commit that we might want to undo:

Undoing git commit

Problem Solu�on Comments

Change to the files
in the repository git revert <commit>

Creates another commit
with the opposite changes

Forgot to add a file
before commi�ng

git commit

--amend

--no-edit

You can add the file,
and then run this command.
Don’t do it a�er git push

Wrong commit message git commit --amend
You can change the commit message.
Don’t do it a�er git push

Branch has moved
to new commit

git reset

--soft

<last-good-commit>

Moves the current branch
to the chosen commit.
Don’t do it a�er git push

 Avoid rewri�ng published history

If you have already published your changes to a branch with git push and someone has
already seen them (and perhaps started working on them) using git reset or git commit
--amend could be considered very rude!

Why?

With those commands you do, in other words, rewrite the history of the branch. This
means that the tracking informa�on of the branches in the other repositories might be
inconsistent.

If someone works on a history that has been later rewri�en, it might result in introduc�on
of undesired modifica�ons to the repository. Moreover, it might be hard to spot that such
changes occurred.

In that case, be�er to use

Patching: Partial commands

Most of the commands listed above accept a --patch (or -p) op�on that allows to
interac�vely select the parts (hunks) of a file that will be copied, very useful when some
addi�onal finesse is required.

 Take-home messages

To undo git add , typically you need to copy the content of HEAD into the index. git
restore --staged <file-path> or git reset will do it.
To undo a commit, typically you want to use git revert . If you have not used git
push yet, you have fancier op�ons.
A convenient guide to get out of unpleasant situa�ons can be found here.
An alterna�ve explana�on of many useful “life-saving” commands is available here

Inspecting history

 Objec�ves

Be able find a line of code, find out why it was introduced and when.
Be able to quickly find the commit that changed a behavior.

Instructor note

30 min teaching/type-along
20 min exercise

Command line, GitHub, and VS Code

As usual, we offer ways to do this with the command line, VS Code, and GitHub.

Command line is most powerful and rela�vely easy with this. You may also use it along
with other things. If you haven’t tried it yet, we’d recommend you to give it a try.
The GitHub web interface allows many things to be done, but not everything.
VS Code allows some of these, but for some it’s easier to open the VS Code terminal and
run git there.

Our toolbox for history inspection

Instructor note

First the instructor demonstrates few commands on a real life example repository
h�ps://github.com/networkx/networkx (men�oned in the amazing site The Programming
Historian). Later we will prac�ce these in an archaeology exercise (below).

Warm-up: “Git History” browser

As a warm-up we can try the “Git History” browser on the README.rst file of the networkx
repository:

https://dangitgit.com/en
https://coderefinery.github.io/git-intro/recovering/
https://github.com/networkx/networkx
https://programminghistorian.org/
https://programminghistorian.org/
https://githistory.xyz/
https://githistory.xyz/
https://github.com/networkx/networkx

Visit and browse
h�ps://github.githistory.xyz/networkx/networkx/blob/main/README.rst (use le�/right
keys).
You can try this on some of your GitHub repositories, too!

Searching text patterns in the repository

With git grep you can find all lines in a repository which contain some string or regular
expression. This is useful to find out where in the code some variable is used or some error
message printed.

Inspecting individual commits

Command line GitHub VS Code RStudio

The Git command is as described above:

In the networkx repository you can try:

While git grep searches the current state of the repository, it is also possible to search
through all changes with git log -S sometext which can be useful to find where
something got removed.

$ git grep TEXT

$ git grep "some text with spaces"

$ git clone https://github.com/networkx/networkx
$ cd networkx

$ git grep -i fixme

Command line GitHub VS Code RStudio

We have seen this one before already. Using git show we can inspect an individual
commit if we know its hash:

For instance:

$ git show HASH

https://github.githistory.xyz/networkx/networkx/blob/main/README.rst
https://github.com/networkx/networkx

Line-by-line code annotation with metadata

With git annotate you can see line by line who and when the line was modified last. It also
prints the precise hash of the last change which modified each line. Incredibly useful for
reproducibility.

💬 Discussion

Discuss how these rela�vely trivial changes affect the annota�on:

Wrapping long lines of text/code into shorter lines
Auto-forma�ng tools such as black
Editors that automa�cally remove trailing whitespace

Inspecting code in the past

$ git show 759d589bdfa61aff99e0535938f14f67b01c83f7

Command line GitHub VS Code RStudio

Example:

If you annotate in a terminal and the file is longer than the screen, Git by default uses
the program less to scroll the output. Use /sometext <ENTER> to find “sometext” and
you can cycle through the results with n (next) and N (last). You can also use page
up/down to scroll. You can quit with q .

$ git annotate FILE

$ git annotate networkx/convert_matrix.py

Command line GitHub VS Code RStudio

We can create branches poin�ng to a commit in the past. This is the recommended
mechanism to inspect old code:

Exercise

This is described with the command line method, but by looking above you can translate to
the other op�ons.

✍ Exercise: Explore basic archaeology commands (20 min)

Let us explore the value of these commands in an exercise. Future exercises do not
depend on this, so it is OK if you do not complete it fully.

Exercise steps:

Make sure you are not inside another Git repository when running this exercise. If
you are, first step “outside” of it. We want to avoid crea�ng a Git repository inside
another Git repository.

Example (lines star�ng with “#” are only comments):

On old Git versions which do not know the switch command (before 2.23), you need to
use this instead:

$ git switch --create BRANCHNAME HASH

$ # create branch called "older-code" from hash 347e6292419b

$ git switch --create older-code 347e6292419bd0e4bff077fe971f983932d7a0e9

$ # now you can navigate and inspect the code as it was back then

$ # ...

$ # after we are done we can switch back to "main"
$ git switch main

$ # if we like we can delete the "older-code" branch

$ git branch -d older-code

$ git checkout -b BRANCHNAME SOMEHASH

Command line GitHub VS Code RStudio

You can check if you are inside a Git repository with:

Clone this repository: h�ps://github.com/networkx/networkx.git.

Then let us all make sure we are working on a well-defined version of the repository.

Then using the above toolbox try to:

1. Find the code line which contains "Logic error in degree_correlation" .
2. Find out when this line was last modified or added. Find the actual commit which

modified that line.
3. Inspect that commit with git show .
4. Create a branch poin�ng to the past when that commit was created to be able to

browse and use the code as it was back then.

You want to see the above message which tells us that this is not a Git repository.

$ git status

fatal: not a git repository (or any of the parent directories): .git

Command line GitHub VS Code RStudio

$ git clone https://github.com/networkx/networkx.git

Command line GitHub VS Code RStudio

Step into the new directory and create an exercise branch from the networkx-
2.6.3 tag/release:

On old Git versions which do not know the switch command (before 2.23), you
need to use this instead:

$ cd networkx

$ git switch --create exercise networkx-2.6.3

$ git checkout -b exercise networkx-2.6.3

https://github.com/networkx/networkx.git

5. How would you bring the code to the version of the code right before that line was
last modified?

✔ Solu�on

We provide here a solu�on for the command line but we also encourage you to try to
solve this in the browser.

1. We use git grep :

This gives the output:

Maybe you also want to know the line number:

2. We use git annotate :

Then search for “Logic error” by typing “/Logic error” followed by Enter. The last
commit that modified it was 90544b4fa (unless that line changed since).

3. We use git show :

4. Create a branch poin�ng to that commit (here we called the branch “past-code”):

5. This is a compact way to access the first parent of 90544b4fa (here we called the
branch “just-before”):

$ git grep "Logic error in degree_correlation"

networkx/algorithms/threshold.py: print("Logic error in

degree_correlation", i, rdi)

$ git grep -n "Logic error in degree_correlation"

$ git annotate networkx/algorithms/threshold.py

$ git show 90544b4fa

$ git branch past-code 90544b4fa

$ git switch --create just-before 90544b4fa~1

Finding out when something broke/changed with git bisect

This only works with the command line.

“But I am sure it used to work! Strange.”

Some�mes you realize that something broke. You know that it used to work. You do not
know when it broke.

💬 How would you solve this?

Before we go on first discuss how you would solve this problem: You know that it worked
500 commits ago but it does not work now.

How would you find the commit which changed it?
Why could it be useful to know the commit that changed it?

We will probably arrive at a solu�on which is similar to git bisect :

First find out a commit in past when it worked.

Now compile and/or run and/or test and decide whether “good” or “bad”.
This is how you can tell Git that this was a working commit:

And this is how you can tell Git that this was not a working commit:

Then bisect/iterate your way un�l you find the commit that broke it.
If you want to go back to start, type git bisect reset .

$ git bisect start

$ git bisect good f0ea950 # this is a commit that worked

$ git bisect bad main # last commit is broken

$ git bisect good

$ git bisect bad

This can even be automa�zed with git bisect run SCRIPT . For this you write a script
that returns zero/non-zero (success/failure).

Optional exercise: Git bisect

This only works with the command line.

✍ (op�onal) History-2: Use git bisect to find the bad commit

In this exercise, we use git bisect on an example repository. It is OK if you do not
complete this exercise fully.

Begin by cloning h�ps://github.com/coderefinery/git-bisect-exercise.

Mo�va�on

The mo�va�on for this exercise is to be able to do archaeology with Git on a source code
where the bug is difficult to see visually. Finding the offending commit is o�en more than
half the debugging.

Background

The script get_pi.py approximates pi using terms of the Nilakantha series. It should
produce 3.14 but it does not. The script broke at some point and produces 3.57 using the
last commit:

At some point within the 500 first commits, an error was introduced. The only thing we
know is that the first commit worked correctly.

Your task

Clone this repository and use git bisect to find the commit which broke the
computa�on (solu�on - spoiler alert!).
Once you have found the offending commit, also prac�ce naviga�ng to the last good
commit.
Bonus exercise: Write a script that checks for a correct result and use git bisect run
to find the offending commit automa�cally (solu�on - spoiler alert!).

Hints

$ python get_pi.py

3.57

https://github.com/coderefinery/git-bisect-exercise
https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert
https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert

Finding the first commit:

How to navigate to the parent of a commit with hash SOMEHASH:

Instead of a �lde you can also use this:

Summary

git log/grep/annotate/show/bisect is a powerful combina�on when doing archaeology in
a project on the command line.
git switch --create NAME HASH is the recommended mechanism to inspect old code on

the command line.
Most of these commands can be used in the GitHub web interface (except git bisect).

Optional: Git Internals

 Objec�ves

Understand what is easy to do with git, and what is not easy

Instructor note

15 min teaching/type-along
15 min exercise

Down the rabbit hole

When usually working with Git, you will never need to go inside .git, but in this exercise we
will in order to learn about

how branches are implemented in Git, and how to use them freely
how you can avoid losing data with Git.

⚙ Prerequisites

$ git log --oneline | tail -n 1

$ git switch --create BRANCHNAME SOMEHASH~1

$ git switch --create BRANCHNAME SOMEHASH^

For this exercise create a new repository and commit a couple of changes. You can also
clone this repository:

Now that we’ve made a couple of commits let us look at what is happening under the hood.

Git stores everything under the .git folder in your repository.
We will have a look at the objects and the refs directories.

In the objects directory we find, among others, 3 kinds of objects:

commit s: These represent the commits we have made with git commit
blob s: These represent snapshots of all the files we have ever added to the repo with
git add .
tree s: These represent directories containing the files we have added, and reference

other tree s (subdirectories) and blob s (files that we have added).

commit objects contain informa�on about the author and the commit message, and every
commit object references a single tree object.

All objects are named as the SHA-1 hash (a 40-character hexadecimal string) that is
computed on their content.
This means that all objects are immutable.

$ git clone https://github.com/mmesiti/merge-fu.git

$ cd .git

$ ls -l

drwxr-xr-x - user 25 Aug 15:51 branches

.rw-r--r-- 499 user 25 Aug 15:52 COMMIT_EDITMSG

.rw-r--r-- 92 user 25 Aug 15:51 config

.rw-r--r-- 73 user 25 Aug 15:51 description

.rw-r--r-- 21 user 25 Aug 15:51 HEAD

drwxr-xr-x - user 25 Aug 15:51 hooks

.rw-r--r-- 137 user 25 Aug 15:52 index

drwxr-xr-x - user 25 Aug 15:51 info

drwxr-xr-x - user 25 Aug 15:52 logs
drwxr-xr-x - user 25 Aug 15:52 objects

drwxr-xr-x - user 25 Aug 15:51 refs

States of a Git repository. Image from the Pro Git book. License CC BY 3.0.

✍ Changes and their effect: files and commits

Refer to the figure above, and discuss: which SHA-1 hashes would change in the diagram
if:

the content of the first file is changed,
we recreate a commit with another message or author
we recreate a commit with the same message or author

Is it possibe to have mul�ple commits refer to the same tree? What happens when you
use git revert ?

✔ Solu�on

When rever�ng a commit B that happens a�er a commit A, the new commit will point
at the same tree as A.

Once you have several commits, each commit object also links to the hash of the previous
commit(s) (there is more than one previous commit for for merge commits). The commits
form a directed acyclic graph (do not worry if the term is not familiar).

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-and-tree.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-and-tree.png
https://git-scm.com/book/
http://eagain.net/articles/git-for-computer-scientists/

A commit and its parents. Image from the Pro Git book. License CC BY 3.0.

💬 Changes and their effect: changing history

Refer to the figure above, and discuss: which SHA-1 hashes would change in the diagram
if:

The the 3rd commit were changed
The 2nd commit were changed

Git is at its core a content-addressed storage system

CAS: “mechanism for storing informa�on that can be retrieved based on its content, not
its storage loca�on”
Content address is the content digest (SHA-1 checksum)
Stored data does not change, so when we modify commits or add new version of the files,
we always create new objects. Git doesn’t delete the old objects right away, which is why
it is very hard to lose data if you commit it once.

✍ A look at the objects

Let us poke a bit into raw objects! Start with:

Then explore the tree object, then the file object, etc. recursively using the hashes
you see.

Demo: If you add it, you don’t lose it (for a while)

A common way to (apparently) lose work is to use git add indiscriminately.

You make some changes to a file, (let us call this version A) you git add them, then you make
some other changes (let us call this version B) and you git add those again.

$ git cat-file -p HEAD

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commits-and-parents.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commits-and-parents.png
https://git-scm.com/book/
https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage

Now version A is apparently lost, and if we realize that we need it back we typically click
nervously on the “undo” arrow of our editor.

But fear not! Try this.

1. Create a file named test-add with the following command:

2. Add it to the repository

3. Now change the content of the file to be

4. And repeat the add command

5. Apparently we have lost the previous version of the file. But it is actually there, stored in
a dangling blob object (which is not referenced, even indirectly, by any ref) We can see
this with the command fsck :

We can see the content of that blob by passing its hash (shortened for convenience) to
the git cat-file -p command:

Dele�on of dangling objects is done by a garbage collector that might be triggered
automa�cally by some commands.

💬 Discussion

echo 'Once a file has been git added, it is hard to lose!' > test-add

$ git add test-add

Ops

$ git add test-add

$ git fsck

Checking object directories: 100% (256/256), done.

dangling blob dc3b15f60045eea7a87639436ed75021130579e0

$ git cat-file -p dc3b
Once a file has been git added, it is hard to lose!

Discuss the findings with other course par�cipants.

Operating on Branches

A branch represents independent line of work. Git internal structure makes it very easy to
implement branches as a thin layer of abstrac�on on its Object database.

 Objec�ves

Understand that branches are just pointers to commits
Manipulate local branches

In this exercise we will look inside the .git directory in order to learn about how branches
are implemented in Git, and how to use them freely.

Demonstration: experimenting with branches

Branches are pointers to commits that move over �me.

We are star�ng from the main branch and create an idea branch:

(Crea�ng a branch and switching to it can be done in a single command with git switch --
create <branch-name>)

Let us li� the hood and create few branches “manually”, without using the git branch
command.

Let us have a look at the refs directory:

$ git status

On branch main
nothing to commit, working tree clean

$ git branch idea

$ git switch idea

Switched to a new branch 'idea'

$ git branch

* idea

 main

https://coderefinery.github.io/git-intro/reference/#term-branch

Let us check what the idea file looks like (do not worry if the hash is different):

Now let us replicate this file:

Let us go up two levels and inspect the file HEAD :

Let us open this file and change it to:

Now - on which branch are we?

✍ Exercise

By changing the content of .git/HEAD we have manually “switched” from a branch to
another one that actually points to the same commit.

$ ls -l .git/refs/heads

.rw-r--r-- 41 user 25 Aug 15:54 idea

.rw-r--r-- 41 user 25 Aug 15:52 main

$ cat .git/ref/heads/idea

045e3db14740c60684d745e5fb891ae71e335611

$ cp .git/refs/heads/idea .git/refs/heads/idea-2
$ cp .git/refs/heads/idea .git/refs/heads/idea-3

$ cat .git/HEAD

ref: refs/heads/idea

ref: refs/heads/idea-3

$ git branch

 idea

 idea-2

* idea-3
 main

What would have happened if we changed HEAD to point to a branch that does not
point to the same commit as the one we were on before? What would we see with git
status ?

✍ Branches on different repositories

How are branches on different repositories related to each other?

✔ Solu�on

A�er crea�ng a branch, one can use the --set-upstream-to op�ons

to set the default upstream branch.

When pushing, it is possible to use the verbose command:

Typically <local-branch> and <remote-branch> are the same, and :<remote-branch> is
omi�ed it is assumed to be equal to <local-branch> .

git push can also use the default upstream branch if configured correctly:

But typically there is no need for such complex setups.

Deleting branches (also by mistake - and undoing it)

Let us add some work on the branch idea-3 , and create some addi�onal commits.

Let’s assume we want to remove the branch idea-2 , to �dy up our repository.

We first switch to main , then try to remove the useless branch

$ git branch <new-branch>

$ git branch <new-branch> --set-upstream-to=<remote>/<branch>

$ git push <repository> <local-branch>:<remote-branch>

$ git config --local push.default upstream

We are sure we want to delete, so we use the -D op�on.

We then get distracted and go doing something else.

Wait a moment! We deleted the wrong branch. Is our work lost? Using

we can see all the last commits pointed at by HEAD, and among them there will be the one
which was referenced by idea-3 before we deleted it. We can check it out and recreate our
branch.

Moving branches back to where they pointed

When using many commands, we move forward the branch we are on.

We can make a branch point back to where it pointed before by switching to it and using
git reset --soft .

If we do not exactly remember where it pointed, we can use git reflog <branch name> to get
an idea of where it was moved.

Visualizing branches efficiently

When working with branches on the command line, it is useful to look at the log with the
following command (or something similar):

$ git switch main

$ git branch -d idea-3

error: The branch 'idea-3' is not fully merged.

$ git branch -D idea-3

$ clear

$ git reflog

$ git log --oneline --graph --all

It is inconvenient to type such a long message every �me. Git allows us to configure an alias
for it, in this case it will be called graph :

A�er this configura�on, we will be able to use graph as a git command with the same effect
as the original, longer command.

Concepts around collaboration

 Objec�ves

Be able to decide whether to divide work at the branch level or at the repository level.

Instructor note

15 min teaching

Motivation

Someone has given you access to a repository online and you want to contribute?
We will review how to make a copy and send changes back.
Then, we make a “pull request” that allows a review.
Once we know how code review works, we will be able to:

propose changes to repositories of others
review changes submi�ed by external contributors.

Cloning a repository

In order to make a copy a repository (a clone), the git clone command can be used. Cloning
of a repository is of relevance in a few different situa�ons:

Working on your own, cloning is the way to copy a repository on, e.g., a personal
computer, a server, and a supercomputer.
The original repository could be a repository that you or your colleague own. A common
use case for cloning is when working together within a smaller team where everyone has
read and write access to the same git repository.
Alterna�vely, cloning can be made from a public repository of a code that you would like
to use. Perhaps you have no inten�on to work on the code, but would like to stay in tune
with the latest developments, also in-between releases of new versions of the code.
Your work is not visible to others, because it is on your computer.

$ git config --global alias.graph "log --all --oneline --graph --decorate"

Cloning

Forking a repository

Forking a repository on a forge creates a clone that reside under a different account on the
same forge (a fork).
It is typically done to work on a git repository you cannot write to.

Your work is visible to others, because it is on the web
commits in the fork can be made to any branch (including main or master)
The commits that are made within the branches of the fork repository can be contributed
back to the parent repository by means of pull (or merge) requests.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/clone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/clone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork.png

Forking

✍ Exercise

What is the difference between forking and then cloning (your fork, to your computer) vs
cloning (to your computer) and then pushing to a brand new repository?

✔ Solu�on

1. Forking on a forge and then cloning creates links:

from your fork to the original repository;
from clone to your fork.

2. When cloning and then pushing to a new repository, you will create links:

from your clone to the original repository;
from your clone to the new repository.

Your repository on the forge will not have a link to the original repository and will
not be listed as a fork of the original repository.

Generating from templates and importing

There are two more ways to create “copies” of repositories into your user space:

A repository can be marked as template and new repositories can be generated from it
like using a cookie-cu�er. The newly created repository will start with a new history.
You can import a repository from another hos�ng service or web address. This will
preserve the history of the imported project and features like Wikis, issues and the like.

💬 Discussion

Visit one of the repositories/projects that you have used recently and try to find out
how many forks exist and where they are.
In which situa�ons could it be useful to start from a “template” repository by
genera�ng?

Synchronizing changes between repositories

We need a mechanism to communicate changes between the repositories.
We will pull or fetch updates from remote repositories (we will soon discuss the
difference between pull and fetch).
We will push updates to remote repositories.
We will learn how to suggest changes within repositories on a forge and across
repositories (pull request).

Repositories that are forked or cloned do not automa�cally synchronize themselves: We
will learn how to update forks (by pulling from the “central” repository).
A main difference between cloning a repository and forking a repository is that

cloning is a general opera�on for genera�ng copies of a repository to different
computers
forking is a par�cular opera�on implemented on forges (that includes cloning)

Forking and cloning

Authentication: connecting to the repository from your computer

There are mainly two ways to do authen�ca�on:

SSH keys
HTTPS

Please have a look at this guide by CodeRefinery for a general introduc�on to authen�ca�on
op�ons.

We suggest se�ng up and using an SSH key, since it is a form of authen�ca�on that is also
used on other services (e.g., to access HPC systems). For a step-by-step guide look at this
walkthrough by So�ware Carpentry.

Authen�ca�on via HTTPS might require less set up, if password authen�ca�on is allowed.
If not, you can use a personal access token as a drop-in replacement, which can be
configured at these pages:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forkandclone.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/forkandclone.png
https://coderefinery.github.io/installation/ssh/
https://swcarpentry.github.io/git-novice/07-github.html#ssh-background-and-setup
https://swcarpentry.github.io/git-novice/07-github.html#ssh-background-and-setup

gitlab.com
gitlab.kit.edu

Problems in Collaborative Software development

Merging can be a difficult moment in the life cycle of a so�ware.

Git will try to do reasonable opera�ons when merging two different lines of work, but:

There might be an detectable ambiguity in the way that two different lines of work can be
reconciled (this leads to a conflict)
the results are not guaranteed to give you working so�ware all the �mes (i.e., you don’t
get a conflict, but the result is not correct either - this is scarier).

Contribu�ng to the main branch as o�en as possible, to make the changes as small as
possible, is a possible approach to reduce the difficulty related to merging.

In the following chapters we will focus on tools that ease the communica�on aspect of
collabora�ve so�ware development.

Collaborating within the same repository: issues and pull
requests

In this episode, we will learn how to collaborate within the same repository. We will learn
how to cross-reference issues and pull requests, how to review pull requests, and how to use
dra� pull requests.

This exercise will form a good basis for collabora�on that is suitable for most research
groups.

Exercise

In this exercise, we will contribute to a repository via a pull request. This means that you
propose some change, and then it is accepted (or not).

⚙ Exercise prepara�on

First, we need to get access to some repository to which we will contribute.

1. Form not too large groups (4-5 persons), which have accounts on the same forge.
2. Each group needs to appoint someone who will host the shared repository: the

maintainer. This is typically the exercise lead (if available). Everyone else is a
collaborator.

3. The maintainer (one person per group) generates a new repository called centralized-
workflow-exercise on the selected forge:

https://gitlab.com/-/user_settings/personal_access_tokens
https://gitlab.kit.edu/-/user_settings/personal_access_tokens

⚙ How to prepare the repository

Then everyone in your group needs their account on the forge to be added as
collaborator to the exercise repository:

Collaborators give their usernames on the forge to their chosen maintainer.
Maintainer gives the other group members the newly created repository URL.
Maintainer adds par�cipants as collaborators to their project.

on github.com: Se�ngs -> Collaborators and teams -> Manage access ->
Add people.
on GitLab: Manage -> Members -> Invite Members. Choose at least the
Maintainer role for this exercise
on Codeberg: Se�ngs -> Collaborators

Don’t forget to accept the invita�on
Check your personal area on the forge of choice (look for your no�fica�ons)
Alterna�vely check the inbox for the email account you registered with the
forge.

GitHub emails you an invita�on link, but if you don’t receive it you can go to
your GitHub no�fica�ons in the top right corner. The maintainer can also
“copy invite link” and share it within the group.

On github.com On other Forges: Clone and Push to new repository

The repository can be generated from the template
h�ps://github.com/coderefinery/template-centralized-workflow-exercise (There is
no need to �ck “Include all branches” for this exercise):

https://github.com/coderefinery/template-centralized-workflow-exercise
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/generate_repo.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/generate_repo.png

Watching and unwatching repositories

Now that you are a collaborator, you get no�fied about new issues and
pull/merge requests via email.
If you do not wish this, you can “unwatch” a repository (top of the project
page).
However, we recommend watching repositories you are interested in. You can
learn things from experts just by watching the ac�vity that come through a
popular project.

Unwatch a repository by clicking “Unwatch” in the repository view, then “Par�cipa�ng
and @men�ons” - this way, you will get no�fica�ons about your own interac�ons.

✍ Exercise: Collabora�ng within the same repository (45 min)

Technical requirements (from installa�on instruc�ons):

If you create the commits locally: Being able to authen�cate to GitHub

Skills that you will prac�ce:

Cloning a repository (CodeRefinery lesson)
Crea�ng a branch (CodeRefinery lesson)
Commi�ng a change on the new branch (CodeRefinery lesson)
Submit a pull request towards the main branch (CodeRefinery lesson)
If you create the changes locally, you will need to push them to the remote repository.
Learning what a protected branch is and how to modify a protected branch: using a
pull request.
Cross-referencing issues and pull requests.
Prac�ce to review a pull request.

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/local-workflow/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

Learn about the value of dra� pull requests.

Exercise tasks:

1. Open an issue where you describe the change you want to make. Note down the issue
number since you will need it later.

2. Create a new branch.
3. Make a change to the recipe book on the new branch and in the commit cross-

reference the issue you opened (see the walk-through below for how to do that).
4. Push your new branch (with the new commit) to the repository you are working on.
5. Open a pull request towards the main branch.
6. Review somebody else’s pull request and give construc�ve feedback. Merge their pull

request.
7. Try to create a new branch with some half-finished work and open a dra� pull request.

Verify that the dra� pull request cannot be merged since it is not meant to be merged
yet.

Solution and hints

(1) Opening an issue

This is done through the web interface of your preferred forge. For example, you could give
the name of the recipe you want to add (so that others don’t add the same one).

On github.com and codeberg.org: Top row -> the “Issues” tab.
On GitLab: Le� side -> Plan -> Issues

(2) Create a new branch.

You have two op�ons:

make the branch in the web interface (CodeRefinery lesson - refresher, for GitHub:
Commi�ng changes)
If working locally, you need to know how to work locally.

Note: on GitLab, it is possible to create a merge request (and a branch) directly from an issue.

(3) Make a change adding the recipe

Add a new file with the recipe in it. Commit the file. In the commit message, include the note
about the issue number, saying that this will close that issue.

Cross-referencing issues and pull requests

https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/local-workflow/

Each issue and each pull request gets a number and you can cross-reference them.

When you open an issue, note down the issue number (in this case it is #2):

You can reference this issue number in a commit message or in a pull request, like in this
commit message:

If you forget to do that in your commit message, you can also reference the issue in the pull
request descrip�on. And instead of fixes you can also use closes or resolves or fix or
close or resolve (case insensi�ve).

Then observe what happens in the issue once your commit gets merged: it will automa�cally
close the issue and create a link between the issue and the commit. This is very useful for
tracking what changes were made in response to which issue and to know from when un�l
when precisely the issue was open.
(4) Push to your forge as a new branch

Covered in Cloning a Git repository and working locally.

Push the branch to the repository. You should end up with a branch visible in the web view
of your forge.

This is only necessary if you created the changes locally. If you created the changes directly
on the web interface of the forge, you can skip this step.

this is the new recipe; fixes #2

VS Code Command line

In VS Code, you can “publish the branch” to the remote repository by clicking the cloud
icon in the bo�om le� corner of the window:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/issue-number.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/issue-number.png
https://coderefinery.github.io/git-intro/local-workflow/

If the remote points to the wrong place, you can change it with:

(5) Open a pull request towards the main branch

This is done through the GitHub web interface. We saw this in, for example, in a previous
lesson.

(6) Reviewing pull requests

You review through the web interface.

Checklist for reviewing a pull request:

Be kind, on the other side is a human who has put effort into this.
Be construc�ve: if you see a problem, suggest a solu�on.
Towards which branch is this directed?
Is the �tle descrip�ve?
Is the descrip�on informa�ve?
Scroll down to see commits.
Scroll down to see the changes.
If you get incredibly many changes, also consider the license or copyright and ask where
all that code is coming from.
Again, be kind and construc�ve.
Later we will learn how to suggest changes directly in the pull request.

$ git remote set-url origin NEWADDRESS

https://coderefinery.github.io/git-intro/merging/
https://coderefinery.github.io/git-intro/merging/
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/vscode-publish-branch.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/vscode-publish-branch.png

If someone is new, it’s o�en nice to say something encouraging in the comments before
merging (even if it’s just “thanks”). If all is good and there’s not much else to say, you could
merge directly.
(7) Draft/WIP pull requests

Try to create a dra� pull request:

Verify that the dra� pull request cannot be merged un�l it is marked as ready for review:

Dra�/WIP pull requests can be useful for:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr-wip.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/draft-pr-wip.png

Feedback: You can open a pull request early to get feedback on your work without
signaling that it is ready to merge.
Informa�on: They can help communica�ng to others that a change is coming up and in
progress.
Discussion: while an issue can be used to discuss a problem, a dra� pull request can be
used to show a possible solu�on

What is a protected branch? And how to modify it?

A protected branch is a branch that has some restric�ons. For example, it cannot
(accidentally) deleted or force-pushed to. It is also possible to require that a branch cannot
be directly pushed to or modified, but that changes must be submi�ed via a pull or merge
request (that can be accepted or rejected by the owners or maintainers of the repository).

To protect a branch in your own repository:

on github.com and codeberg.org: “Se�ngs” -> “Branches”.
on GitLab: “Se�ngs” -> Repository -> Branches

Summary

Issue/bug tracking is a very important part of the code development process.
We prac�ced working with issues and pull requests, and how they can be related
The pull request allowed us to contribute to a repository without directly changing its
content, but ask for permission. This is appropriate in many collabora�ve development
scenarios.

Code review demo

Here we will prac�ce the code review process. We will learn:

how to ask for changes in a pull request;
how to suggest a change in a pull request;
how to modify a pull request.

This will enable research groups to work more collabora�vely, which should help to

improve the code quality
learn from each other.

Note that pair programming is usually seen as possible alterna�ve to code review.
Compared to the prac�ce of code review, it has its own pros and cons.

Exercise

⚙ Exercise prepara�on

We can con�nue in the same exercise repository which we have used in the previous
episode.

✍ Exercise: Prac�cing code review (25 min)

Technical requirements:

If you create the commits locally: Being able to authen�cate to your preferred forge

What should be familiar:

Crea�ng a branch (lesson from CodeRefinery)
Commi�ng a change on the new branch (lesson from CodeRefinery)
Opening and merging pull requests (lesson from CodeRefinery)

What will be new in this exercise:

As a reviewer, we will learn how to ask for changes in a pull request.
As a reviewer, we will learn how to suggest a change in a pull request.
As a submi�er, we will learn how to modify a pull request without closing the
incomplete one and opening a new one.

Exercise tasks:

1. Create a new branch and one or few commits: in these improve something but also
deliberately introduce a typo and also a larger mistake which we will want to fix
during the code review.

2. Open a pull request towards the main branch.
3. As a reviewer to somebody else’s pull request, ask for an improvement and also

directly suggest a change for the small typo. (Hint: sugges�ons are possible through
the GitHub web interface, view of a pull request, “Files changed” view, a�er selec�ng
some lines. Look for the “±” bu�on.)

4. As the submi�er, learn how to accept the suggested change. (Hint: GitHub web
interface, “Files Changed” view.)

5. As the submi�er, improve the pull request without having to close and open a new
one: by adding a new commit to the same branch. (Hint: push to the branch again.)

6. Once the changes are addressed, merge the pull request.

Help and discussion

From here on out, we don’t give detailed steps to the solu�on. You need to combine what you
know, and the extra info below, in order to solve the above.

Asking for changes in a pull request: 2 ways

https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

1. Either in the comment field of the pull request:

2. Or by using the “Review changes”:

And always please be kind and construc�ve in your comments. Remember that the goal is not
gate-keeping but collabora�ve learning.
Suggest a change in a pull request as a reviewer

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/files-changed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/files-changed.png

If you see a very small problem that is easy to fix, add a comment by clicking on the sign next
to the line number in the tab that shows the changes:

Here you can comment on specific lines or even line ranges.

Click on the “Add sugges�on/Insert sugges�on” symbol. Now you can fix the �ny problem (in
this case a typo) and then click on the “Add single comment” bu�on:

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/add-suggestion.png

The result is this and the submi�er can accept the change with a single click:

A�er accep�ng with “Commit sugges�on”, the improvement gets added to the pull request.
How to modify a pull request to address the review comments

If the reviewer asks for changes, it is not necessary to close the pull request and later open a
new one. It can even be counter-produc�ve to do so: This can fragment the discussion and
the history of the pull request and can make it harder to understand the context of the
changes.

A much be�er mechanism to recognize that pull requests are not implemented from a
specific commit to a specific branch, but always from a branch to a branch.

This means that you can make amendments to the pull request by adding new commits to the
same source branch. This way the pull request will be updated automa�cally and the
reviewer can see the new changes and comment on them.

The fact that pull requests are from branch to branch also strongly suggests that it is a good
prac�ce to create a new branch for each pull request. Otherwise you could accidentally
modify an open pull request by adding new commits to the source branch.

Summary

Our process isn’t just about code now. It’s about discussion and working together to
make the whole process be�er.
GitHub discussions and reviewing is quite powerful and can make small changes easy.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-suggestion.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/commit-suggestion.png

How to contribute changes to repositories that belong to
others

In this episode we prepare you to suggest and contribute changes to repositories that belong
to others. These might be open source projects that you use in your work.

We will see how Git and services like GitHub or GitLab can be used to suggest modifica�on
without having to ask for write access to the repository and accept modifica�ons without
having to grant write access to others.

Exercise

⚙ Exercise prepara�on

✍ Exercise: Collabora�ng within the same repository (25 min)

Technical requirements:

If you create the commits locally: Being able to authen�cate to GitHub

What is familiar from the previous workshop days:

Forking a repository (previous lesson)
Crea�ng a branch (previous lesson)
Commi�ng a change on the new branch (previous lesson)
Opening and merging pull requests (previous lesson)

What will be new in this exercise:

Part of team/exercise room Following on your own

Maintainer (team lead):

Create an exercise repository by genera�ng from a template using this template:
h�ps://github.com/coderefinery/template-forking-workflow-exercise called
forking-workflow-exercise

In this case we do not add collaborators to the repository (this is the point of this
example).
Share the link to the newly created repository with your group.

Learners in exercise team: Fork the newly created repository (not the “coderefinery”
one) and then clone your fork (if you wish to work locally).

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/browsing/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://github.com/coderefinery/template-forking-workflow-exercise

Opening a pull request towards the upstream repository.
Pull requests can be coupled with automated tes�ng.
Learning that your fork can get out of date.
A�er the pull requests are merged, upda�ng your fork with the changes.
Learn how to approach other people’s repositories with ideas, changes, and requests.

Exercise tasks:

1. Open an issue in the upstream exercise repository where you describe the change you
want to make. Take note of the issue number.

2. Create a new branch in your fork of the repository.
3. Make a change to the recipe book on the new branch and in the commit cross-

reference the issue you opened. See the walk-through below for how to do this.
4. Open a pull request towards the upstream repository.
5. Team leaders will merge the pull requests. For individual par�cipants, the instructors

and workshop organizers will review and merge the pull requests. During the review,
pay a�en�on to the automated test step (here for demonstra�on purposes, we test
whether the recipe contains an ingredients and an instruc�ons sec�ons).

6. A�er few pull requests are merged, update your fork with the changes.
7. Check that in your fork you can see changes from other people’s pull requests.

Help and discussion

Opening a pull request towards the upstream repository

We have learned in the previous episode that pull requests are always from branch to
branch. But the branch can be in a different repository.

When you open a pull request in a fork, by default GitHub will suggest to direct it towards
the default branch of the upstream repository.

This can be changed and it should always be verified, but in this case this is exactly what we
want to do, from fork towards upstream:

Pull requests can be coupled with automated testing

We added an automated test here just for fun and so that you see that this is possible to do.

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/pull-request-form.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/pull-request-form.png

In this exercise, the test is silly. It will check whether the recipe contains both an ingredients
and an instruc�ons sec�on.

In this example the test failed:

Click on the “Details” link to see the details of the failed test:

How can this be useful?

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/check-details.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/check-details.png

The project can define what kind of tests are expected to pass before a pull request can
be merged.
The reviewer can see the results of the tests, without having to run them locally.

How does it work?

We added a GitHub Ac�ons workflow to automa�cally run on each push or pull request
towards the main branch.

What tests or steps can you image for your project to run automa�cally with each pull
request?
How to update your fork with changes from upstream

This used to be difficult but now it is two mouse clicks.

Navigate to your fork and no�ce how GitHub tells you that your fork is behind. In my case, it
is 9 commits behind upstream. To fix this, click on “Sync fork” and then “Update branch”:

A�er the update my “branch is up to date” with the upstream repository:

https://github.com/coderefinery/recipe-book-template/blob/main/.github/workflows/check-recipes.yml
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/sync-fork.png

How to approach other people’s repositories with ideas, changes, and
requests

Contribu�ng very minor changes

Clone or fork+clone repository
Create a branch
Commit and push change
Open a pull request or merge request

If you observe an issue and have an idea how to fix it

Open an issue in the repository you wish to contribute to
Describe the problem
If you have a sugges�on on how to fix it, describe your sugges�on
Possibly discuss and get feedback
If you are working on the fix, indicate it in the issue so that others know that somebody is
working on it and who is working on it
Submit your fix as pull request or merge request which references/closes the issue

Mo�va�on

Inform others about an observed problem
Make it clear whether this issue is up for grabs or already being worked on

If you have an idea for a new feature

Open an issue in the repository you wish to contribute to
In the issue, write a short proposal for your suggested change or new feature
Mo�vate why and how you wish to do this
Also indicate where you are unsure and where you would like feedback
Discuss and get feedback before you code
Once you start coding, indicate that you are working on it
Once you are done, submit your new feature as pull request or merge request which
references/closes the issue/proposal

Mo�va�on

file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork-after-update.png
file:///home/runner/work/git-intermediate/git-intermediate/_build/pyppeteer/_images/fork-after-update.png

Get agreement and feedback before wri�ng 5000 lines of code which might be
rejected
If we later wonder why something was done, we have the issue/proposal as reference
and can read up on the reasoning behind a code change

Summary

This forking workflow lets you propose changes to repositories for which you have no
access.
This is the way that much modern open-source so�ware works.
You can now contribute to any project you can view.

Interrupted work

 Objec�ves

Learn to switch context or abort work without panicking.

Instructor note

10 min teaching/type-along
15 min exercise

 Keypoints

There is almost never reason to clone a fresh copy to complete a task that you have in
mind.
Some�mes Git suggests to “stash your changes”. What is this about?

Frequent situation: interrupted work

We all wish that we could write beau�ful perfect code. But the real world is much more
chao�c:

You are in the middle of a “Jackson-Pollock-style” debugging spree with 27 modified files
and debugging prints everywhere.
Your colleague comes in and wants you to fix/commit something right now.
What to do?

Git provides lots of ways to switch tasks without ruining everything.

💬Ways to switch context

What strategies have you used in the past?

Have you created a new clone of the repository to leave your original directory intact?
Have you used git worktree ?

Option 1: Stashing

The stash is the first and easiest place to temporarily “stash” things.

git stash push will put working directory and staging area changes away. Your code will
be same as last commit.
git stash pop will return to the state you were before.
git stash list will list the current stashes.
git stash push -m "message" is like the first, but will give it a message. Useful if it might

last a while.
git stash push [-p] [filename] will stash certain files files and/or by patches.
git stash drop will drop the most recent stash (or whichever stash you give).

The stashes form a stack, so you can stash several batches of modifica�ons.

Exercise: Stashing

✍ Interrupted-1: Stash some uncommi�ed work

1. Make a change.
2. Check status/diff, stash the change with git stash , check status/diff again.
3. Make a separate, unrelated change which doesn’t touch the same lines. Commit this

change.
4. Pop off the stash you saved with git stash pop , and check status/diff.
5. Op�onal: Do the same but stash twice. Also check git stash list . Can you pop the

stashes in the opposite order?
6. Advanced: What happens if stashes conflict with other changes? Make a change and

stash it. Modify the same line or one right above or below. Pop the stash back. Resolve
the conflict. Note there is no extra commit.

7. Advanced: what does git graph show when you have something stashed?

✔ Solu�on

5: Yes you can. With git stash pop INDEX you can decie which stash index to pop.

6: In this case Git will ask us to resolve the conflict the same way when resolving
conflicts between two branches.

7: It shows an addi�onal commit hash with refs/stash .

✍ Stashing all

Some�mes we want to stash files that are not yet tracked by git (i.e., have not been
add ed). How would we do that? Look at the man page using git help stash .

✔ Solu�on

By passing the op�on -a , we are telling git stash to take every file in our working
tree, including untracked and ignored files.

✍ Comments

The op�on -m to add a message is op�onal. Why use it?

✔ Solu�on

By looking at the output of git stash list , it will be much easier to determine which
stash we are interested in.

✍ Stash vs commit

In what sense are stashes similar to commits?

✔ Solu�on

Option 2: Create branches

You can use branches almost like you have already been doing if you need to save some
work. You need to do something else for a bit? Sounds like a good �me to make a feature
branch.

You basically know how to do this:

Stashing is roughly equivalent to

```console

git switch -c tempbranch; git add -u; git commit -m 'temp commit'}).
```

In particular, stashes are identified as `commit` objects in the object

database,

and they are referenced by `refs/stash` and the reflog of the "stash" reference.

$ git switch --create temporary # create a branch and switch to it
$ git add PATHS # stage changes

$ git commit # commit them

$ git switch main # back to main, continue your work there ...

$ git switch temporary # continue again on "temporary" where you left off

Later you can merge it to main or rebase it on top of main and resume work.

Storing various junk you don’t need but don’t want to get rid of

It happens o�en that you do something and don’t need it, but you don’t want to lose it right
away. You can use either of the above strategies to stash/branch it away: using branches is
probably be�er because branches are less easily overlooked if you come back to the
repository in few weeks. Note that if you try to use a branch a�er a long �me, conflicts might
get really bad but at least you have the data s�ll.

Tooling and practices that you might find useful

 Objec�ves

A bird’s eye view of git-related tooling
Install and configure 1 tool of your choice so that you can start using it

Difftools and merge tools.

There are many file types for which the usual output of git diff can be from difficult to
read to just completely impossible to understand.

For Jupyter notebooks: nbdime
For Latex: Latexdiff (not git-related) and git-latexdiff. Latex is s�ll a text-based format, but
a PDF-rendered view of the differences can be more readable.
There are also tools for images (e.g., git-diff-image)

Automation: Git Hooks

Git can be configured to perform some tasks automa�cally when some events happen.

Most notable tasks:

auto-forma�ng: is your code properly forma�ed? This is important because:
proper forma�ng improves readability
consistently using automa�c forma�ng makes the output of git diff much more
informa�ve (for easier code reviews) There are tools for every language you use:
for Python: black
for C/C++: clang-format

Lin�ng: there are automated tools that can spot bad prac�ces in wri�ng code
for Python: pylint
for C/C++: clang-�dy
for bash shell scripts: shellcheck

https://nbdime.readthedocs.io/en/latest/
https://www.ctan.org/pkg/latexdiff
https://gitlab.com/git-latexdiff/git-latexdiff
https://github.com/ewanmellor/git-diff-image?tab=readme-ov-file
https://black.readthedocs.io/en/stable/
https://clang.llvm.org/docs/ClangFormat.html
https://pylint.readthedocs.io/en/stable/
https://clang.llvm.org/extra/clang-tidy/
https://www.shellcheck.net/

Spellchecking (useful for documenta�on)
compiling/building, deploying services or documenta�on
Launch a test suite

Such tasks can be performed as part of a git hook. Git hooks are executable programs in the
.git/hooks/ directory.

The most commonly used is the pre-commit hook, which runs when you call git commit ,
before the commit message is created. Auto-forma�ng, lin�ng tools and anything that is
quick enough can be run here.

✍ Try them out!

Install and/or configure some of the men�oned tooling that can be helpful for your daily
workflow.

Another hook typically used is post-receive. When it is configured on a remote repository, it
runs a�er a push. The post-receive hook is typically used to start the run of a test suite, or to
no�fy other services that the push happened.

Automation: GitHub Actions, GitLab CI/CD (et similia)

Automa�on pla�orms like, e.g. GitHub ac�ons and GitLab CI/CD build on top of the idea of
the post-receive hook, and are commonly used for (including but not limited to):

run a test suite and present the results in a web interface;
build the so�ware and make it available for download;
build and deploy documenta�on.

Merge and beyond

Git exposes many commands that can be used to add the work done in a branch into another
branch.

For the following demonstra�on, you can clone a toy repository created on purpose:

Have a look at the branch structure:

$ git clone https://github.com/mmesiti/merge-fu.git

$ cd merge-fu

$ git graph # alias for git log --oneline --all --graph --decorate

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/

For what follows, we do not want to see all the branches all the �me, so we want to define a
git gl alias locally without the --all flag:

so that we can use it like this:

Merge

git merge is the classic command that is used join (poten�ally more than 2) branches
together.

It will create an addi�onal commit, called the merge commit.

When Git cannot determine unambiguously how to merge two versions of a given file, it will
produce a conflict.

Solving conflicts requires some prac�ce and typically some thought.

Complex conflicts can be made easier to understand by configuring git to show also the
version in the merge base in addi�on to the two conflic�ng versions:

Using a merge tool can also help when there are large change sets to merge. Please refer to
the documenta�on for more informa�on.

Merge Conflict and abort

Let us now try to merge branch-1 into branch-2 . We first need to create the local branches
that match the remote ones:

We can check what are the differences between the two branches:

$ git config alias.gl --oneline --graph --decorate

$ git gl branch-1 branch-2

git config --global merge.conflictstyle diff3

$ git branch branch-1 origin/branch-1

$ git branch branch-2 origin/branch-2

https://www.git-scm.com/docs/git-merge-base
https://www.git-scm.com/docs/git-mergetool

✍ Predict conflicts

Will the merge between branch-1 and branch-2 cause a conflict? Why?

✔ Solu�on

Unfortunately, yes. Both versions have appended lines at the end, and Git cannot
determine in which order they need to be.

First of all, to do the merge we need to switch to branch-2 :

We will get a conflict:

We can check the content of text-file.txt :

$ git diff branch-1 branch-2

diff --git a/text-file.txt b/text-file.txt

index b7062f5..ce1f6b8 100644
--- a/text-file.txt

+++ b/text-file.txt

@@ -1,4 +1,4 @@

 1st line

 2nd line
 3rd line

-4th line on branch 1

+4th line on branch 2

$ git switch branch-2

$ git merge branch-1
Auto-merging text-file.txt

CONFLICT (content): Merge conflict in text-file.txt

Automatic merge failed; fix conflicts and then commit the result.

$ cat text-file.txt

1st line
2nd line

3rd line

<<<<<<< HEAD

4th line on branch 2

||||||| 874ebe0
4th line

=======

4th line on branch 1

>>>>>>> branch-1

If we know how to solve it, we can modify the file, stage it and commit.

But what to do in the unhappy situa�on where we are not sure how to proceed? We stop the
merge with the command

The --abort op�on is a useful “handbrake” that works also with other commands.

No conflicts, but still wrong

There are cases where a conflictless git merge can introduce a bug.

For example, switch to the branch python-example :

Check the content of the example.py file:

This is obviously wrong: the func�on is not adding 1.

Fortunately, we have already two possible fixes, by Alice and Bob. One is on branch python-
example-fix-1 :

And another is on branch pythyon-example-fix-2 :

$ git merge --abort

$ git switch python-example

$ cat example.py
def add1(n):

 res = n

 print("This function adds 1 to the input")

 return res

$ git switch python-example-fix-1

$ cat example.py

def add1(n):

 res = n + 1

 print("This function adds 1 to the input")

 return res

They are just one commit away from python-example :

Excellent! We will merge them both into python-example , to make everybody feel like their
work is appreciated. We switch to the python-example branch:

We merge first python-example-fix-1 :

This merge is a fast forward: python-example-fix-1 is a direct descendant of the python-
example so python-example can be just moved forward without too much thinking.

We then merge python-example-fix-2 :

$ git switch python-example-fix-2

$ cat example.py

def add1(n):
 res = n

 print("This function adds 1 to the input")

 return res + 1

$ git gl python-example-fix-1 python-example-fix-2

* 4d8b65f (origin/python-example-fix-2, python-example-fix-2) fix add1

| * 0392b16 (origin/python-example-fix-1, python-example-fix-1) fix add1

|/

* ff35a6e (HEAD -> python-example, origin/python-example) add python example
* 874ebe0 (origin/main, origin/HEAD, main) First commit

$ git switch python-example

Switched to branch 'python-example'

Your branch is up to date with 'origin/python-example'.

$ git merge python-example-fix-1
Updating ff35a6e..0392b16

Fast-forward

 example.py | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git merge python-example-fix-2
Auto-merging example.py

Merge made by the 'ort' strategy.

 example.py | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

The file is now wrong, though:

We are adding 1 twice!

This is obviously a contrived example. But it shows that:

1. conflicts might be annoying, but are actually a good thing;
2. merges should always be checked in some way, by a human and/or with an automa�c test

suite.

To fix this, we can undo the commit in one of the ways we have already seen.

✍ Op�onal: revert a merge commit

When rever�ng a merge commit, it is not clear which is the parent commit to which we
want to revert.

Use the -m op�on (--mainline) to select the version you want to revert to. See the
documenta�on for git revert .

Cherry-Pick

There might be a commit in a branch that we want to use, without merging the whole branch
on which it was created.

For this we will consider the branches proverbs and ‘good-and-bad-commits’:

The branch that contains our work is proverbs , where we started a collec�on of popular
pieces of wisdom. Perhaps the branch good-and-bad-commits contains some useful work? We
can check it with git log -p , which will show all the changes along with the commit
messages:

$ cat example.py

def add1(n):

 res = n + 1

 print("This function adds 1 to the input")

 return res + 1

$ git gl proverbs good-and-bad-commits

https://www.git-scm.com/docs/git-revert#Documentation/git-revert.txt--mparent-number

here proverbs..good-and-bad-commits is a way of specifying the range of commits above
merge base on the branch good-and-bad-commits .

Once we see the content of each commit, we become interested in applying the second-last
commit on good-and-bad-commits to the proverb branch.

To do so, we switch to the proverb branch

and use git cherry-pick with the commit we want to apply

We have a conflict, but the resolu�on in this case is trivial.

$ git log --oneline -p proverbs..good-and-bad-commits | cat

9396ffd git is hard!!!!!

diff --git a/wisdom.txt b/wisdom.txt
index b3c8fac..ec51263 100644

--- a/wisdom.txt

+++ b/wisdom.txt

@@ -4,3 +4,6 @@ Early to bed,

 early to rise,
 makes a man wealthy,

 healthy, and wise.

+

+

+I HATE VERSION CONTROL!
82cfb15 Add proverb

diff --git a/wisdom.txt b/wisdom.txt

index c343ccb..b3c8fac 100644

--- a/wisdom.txt

+++ b/wisdom.txt
@@ -1 +1,6 @@

 # Old Proverbs

+

+Early to bed,

+early to rise,
+makes a man wealthy,

+healthy, and wise.

$ git switch proverb

$ git cherry-pick good-and-bad-commits~

Auto-merging wisdom.txt
CONFLICT (content): Merge conflict in wisdom.txt

error: could not apply 82cfb15... Add proverb

hint: After resolving the conflicts, mark them with

hint: "git add/rm <pathspec>", then run

hint: "git cherry-pick --continue".
hint: You can instead skip this commit with "git cherry-pick --skip".

hint: To abort and get back to the state before "git cherry-pick",

hint: run "git cherry-pick --abort".

Rebase

git rebase is an alterna�ve to git merge that typically leads to a clearer commit history.

In par�cular:

an addi�onal merge commit is not necessary
the commit graph has no bifurca�ons

The rebase command will try to reapply all the commits on the current branch on top of
another branch (which will be le� untouched), and then point the current branch at the last
commit.

 The Golden Rule of Rebase

Do not be rude: git rebase rewrites history. Be very careful when rebasing public
branches!

Rebase demo

For this demo we will switch on branch rebase-me

and try to rebase it onto the branch rebase-onto-this , which we need to create locally from
the remote branch, with this command:

We can have a look at the branch structure:

We see that:

$ git switch rebase-me

$ git branch rebase-onto-this origin/rebase-onto-this

$ git gl rebase-me rebase-onto-this
* 3b514df (rebase-onto-this) Add line at end

* e459dcd Add an intermezzo

* a4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1

| * d30163f (HEAD -> rebase-me) 3rd commit - on branch rebase-me

| * 98f36f0 2nd commit - on branch rebase-me
|/

* 874ebe0 (origin/main, origin/HEAD, main) First commit

there is a bifurca�on at 874ebe0
our current branch (rebase-me) has 2 commits above the merge base
the branch we want to rebase on (rebase-onto-this) has 3 commits above the merge
base.

To be able to compare the end result with the ini�al situa�on, we create a “backup branch”
as a bookmark:

We now can do the proper rebase. Make sure we are on the rebase-me branch:

then we invoke the rebase command to rebase the current branch (rebase-me) onto rebase-
onto-this :

This command will try to apply all the commits on the current branch (rebase-me) onto the
branch rebase-onto-this , one at a �me. For each commit we might get a conflict, which is
the first thing

We can resolve this conflict in the way we please.

$ git branch rebase-me-original rebase-me

$ git branch

 branch-1
 branch-2

 good-and-bad-commits

 main

 proverbs

* rebase-me
 rebase-me-original

 rebase-onto-this

$ git rebase rebase-onto-this

Auto-merging text-file.txt

CONFLICT (content): Merge conflict in text-file.txt
error: could not apply 98f36f0... 2nd commit - on branch rebase-me

hint: Resolve all conflicts manually, mark them as resolved with

hint: "git add/rm <conflicted_files>", then run "git rebase --continue".

hint: You can instead skip this commit: run "git rebase --skip".

hint: To abort and get back to the state before "git rebase", run "git rebase --abort".
Could not apply 98f36f0... 2nd commit - on branch rebase-me

Once we are done, we can add our changes:

and tell rebase to con�nue to the next commit:

When rebase can automa�cally merge without commits, it will not ask for our interven�on,
but when there are conflicts it will stop and ask us to solve them, git add the results and
then use git rebase --continue .

A�er all the commits on the current branch are processed, we will get a linear commit
history for the current branch:

We can compare the new commit history with the original posi�on of the branch:

As merge and cherry-pick , rebase has a --abort op�on.

$ # edit text-file.txt

$ git add text-file.txt

$ git rebase --continue

$ git log --oneline

f5b0417 (HEAD -> rebase-me) 3rd commit - on branch rebase-me

3b514df (rebase-onto-this) Add line at end

e459dcd Add an intermezzo

a4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1
874ebe0 (origin/main, origin/HEAD, main) First commit

$ git gl rebase-me rebase-me-original

* f5b0417 (HEAD -> rebase-me) 3rd commit - on branch rebase-me

* 3b514df (rebase-onto-this) Add line at end

* e459dcd Add an intermezzo
* a4cc39e (origin/branch-1, branch-1) 2nd commit - on branch-1

| * d30163f (rebase-me-original) 3rd commit - on branch rebase-me

| * 98f36f0 2nd commit - on branch rebase-me

|/

* 874ebe0 (origin/main, origin/HEAD, main) First commit

If we are not sa�sfied by the result of the rebase a�er it completed, we can use git reflog
rebase-me to determine the last sa�sfactory commit, and use git reset to move the branch
to point there again.

Some�mes, the same conflicts will need to be solved over and over in the same way. In such a
situa�on, the rerere command (re use re corded re solu�on) may come in handy.

Interactive rebase

git rebase has an interac�ve mode (that can be entered using the -i flag, or --
interactive) that can be used to perform complex manipula�ons of the commit history in a
range.

It is very powerful, and it is also used to clean the commit history of a feature branch before
making a pull request (in this case, there are lower chances for conflicts because we rebase
on a commit that is already an ancestor of the current branch, e.g. git rebase -i HEAD~3).

It is possible to perform the following ac�ons on any commit in the range:

pick: keep it in the history;
drop: dropt it from the history;
reword: change only the commit message
squash: remove the commit, but a�ribute its changes to the previous picked commit.
edit: change the files and the commit message (even create new commits in the mean�me
- the opposite of squashing)
exec: pause the rebasing and run a command there (e.g., a test suite)

More informa�on can be read from the manual.

✍ Interac�ve rebase on another branch

You can prac�ce interac�ve rebase with

Quick reference

Other cheatsheets

See the git-intro cheatsheet for the basics.

Interac�ve git cheatsheet

$ git switch rebase-me

$ git reset reset --hard d30163f

$ git rebase -i rebase-onto-this

https://git-scm.com/book/en/v2/Git-Tools-Rerere
https://git-scm.com/docs/git-rebase#_interactive_mode
https://coderefinery.github.io/git-intro/reference/
http://www.ndpsoftware.com/git-cheatsheet.html

Very detailed 2-page git cheatsheet

Glossary

forge

A web-based collabora�ve so�ware pla�orm for both developing and sharing code (from
wikipedia). Common example of forges are github.com, gitlab.com, codeberg.org, and
self-hosted instances of GitLab or Forgejo.

remote

Roughly, another git repository on another computer. A repository can be linked to several
other remotes.

push

Send a branch from your current repository to another repository

fetch

Update your view of another repository

pull

Fetch (above) and then merge

origin

Default name for a remote repository.

origin/NAME

A branch name which represents a remote branch.

main

Default name for main branch.

merge

Combine the changes on two branches.

conflict

When a merge has changes that affect the same lines, git can not automa�cally figure out
what to do. It presents the conflict to the user to resolve.

issue

Feature of web repositories that allows discussion related to a repository.

pull request

A GitHub/Gitlab feature that allows you to send a code sugges�on using a branch, which
allows one-bu�on merging. In Gitlab, called “merge request”.

git hook

Code that can run before or a�er certain ac�ons, for example to do tests before allowing
you to commit.

https://aaltoscicomp.github.io/cheatsheets/git-the-way-you-need-it-cheatsheet.pdf
https://en.wikipedia.org/wiki/Forge_(software)

bare repository

A copy of a repository that only is only the .git directory: there are no files actually
checked out. Directory names usually like something.git

working tree

The directory where the files of your project live, excluding the .git subdirectory. It
represents all that non git-aware applica�ons can interact with, and it exists
independently of git, but it can be manipulated by git

index

Also called some�mes “staging area”. A version of a file is added to it with git add .

object

A git object is one of 4 kinds: a commit (represen�ng a commit or a stash), a tree
(represen�ng a directory), a blob (represen�ng a file) or a tag.

Commands we use

This excludes most introduced in the git-intro cheatsheet.

Setup:

git clone URL [TARGET-DIRECTORY] : Make a copy of exis�ng repository at <url>,
containing all history.

Status:

git status : Same as in basic git, list status
git remote [-v] : List all remotes
git graph : see a detailed graph of commits. Create this command with git config --
global alias.graph "log --all --graph --decorate --oneline"

General work:

git switch BRANCH-NAME : Make a branch ac�ve.
git push [REMOTE-NAME] [BRANCH:BRANCH] : Send commits and update the branch on the

remote.
git pull [REMOTE-NAME] [BRANCH-NAME] : Fetch and then merge automa�cally. Can be

convenient, but to be careful you can fetch and merge separately.
git fetch [REMOTE-NAME] : Get commits from the remote. Doesn’t update local branches,

but updates the remote tracking branches (like origin/NAME).
git merge [BRANCH-NAME] : Updates your current branch with changes from another

branch. By default, merges to the branch is is tracking by default.
git remote add REMOTE-NAME URL : Adds a new remote with a certain name.

https://coderefinery.github.io/git-intro/reference/

List of exercises

Full list

This is a list of all exercises and solu�ons in this lesson, mainly as a reference for helpers and
instructors. This list is automa�cally generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

Instructor guide

Schedule

08:50: So� start
09:00: Necessary introduc�ons, forming groups.
09:15: Recap on Git basics
09:40: Beyond add and commit: undoing mistakes
10:00: Inspec�ng history
10:30: Break
10:50: Concepts around collabora�on
11:00: Collabora�ng within the same repository
11:30: Demo: Code review
11:40: Demo: How to contribute changes to repositories that belong to others
11:50: Tooling and prac�ces
12:00: Merge and Beyond
12:10: Free prac�ce and discussion

Why I modified this lesson

The main change is that I am adding a li�le more content.

My impression is that in CodeRefinery workshops the pace is a bit relaxed, and more could be
done in a in-person se�ng (which is the plan here).

I would not let a�endees work on their own on an exercise for 30 minutes without feedback,
so I changed the �mes of the exercise lessons to also include instructor feedback.

Another change is that I try not to be forge-specific. One reason is that the expected
audience typically has access to GitLab instances, and also someone might be concerned
about handing all their code to a Microso�-owned pla�orm, so I am adding codeberg.org as
an alterna�ve. Another reason is that actually the features of every forge typically evolve
over �me. Looking at a variety of forges at a single �me point might give an idea of the
distribu�on of features of a single forge at different points in �me.

Audience intended for this course

There seems to be quite a demand for an intermediate Git course at KIT.

The audience of this course is expected to be slightly more familiar with git than target of the
original CodeRefinery workshops (which start on day 1 assuming no git knowledge - so I
think), and definitely more advanced than the audience that would a�end a So�ware
Carpentry lesson on Git.

At KIT, we do offer the so�ware carpentry curriculum already twice a year, complete
beginners should a�end those courses instead of coming to this course.

Intended prerequisites

At the beginning of this lesson, learners:

Must know the basic git commands (status/diff/add/commit)
Should be comfortable with the command line
Should Be familiar with the usual git workflow (pull/add/commit/push)
Probably already have used github or similar
Should have a way to authen�cate to the chosen forge

Intended learning outcomes

By the end of this lesson, learners should:

Understand the concept of remotes
Be able to describe the difference between local and remote branches
Be able to describe the difference between centralized and forking workflows
Be able to work efficiently with forges:

Know how to use pull requests or merge requests to submit changes to another
projects
Know how to reference issues in commits or pull/merge requests and how to auto-
close issues
Know how to update a fork

Be able to contribute in code review as submi�er or reviewer
Know the difference between merge and rebase, in par�cular:

Know the golden rule of rebase
What force push means (what are the consequences)
What are the advantages of a linear commit history

Choose the right tool for fixing common problems with Git (I know this is a li�le vague)/
This includes:

issues with lost data when using git add/checkout/restore
cleaning their commit history if they so wish (rebase)
deal with large binary files (lfs/annex)
deal with large repositories (par�al cloning)
using long complex commands efficiently (aliases)
use git to analyse development history (pickaxe, blame, bisect)

re-discover which branches they had been working on before
dealing with nested repositories (existence of submodules)
when you do not want to add/commit part of the changes you made to a file, without
having to undo (poten�ally big) changes in your editor (-p)
collabora�on between windows and *nix users (line ending issues)

Instructor guide - original

Schedule - Original

08:50 - 09:00: So� start and icebreaker ques�on
09:00 - 09:15: Recap Git, any HedgeDoc ques�ons to highlight
09:15 - 09:30: Concepts around collabora�on

Explain terms: Pull, push, clone, fork. Focus on pull and not fetch.
Focus more on clone and less on genera�ng from templates and impor�ng.

09:30 - 11:00: Centralized workflow
9:30 - 9:45: Explain concepts
9:45 - 9:55: Break
9:55 - 10:00: Inform clearly what is expected outcome
10:00 - 10:30: Exercise
10:30 - 11:00: Instructors go through the exercise. Discussion and answering
ques�ons

11:00 - 12:00: Lunch Break
12:00 - 13:10: Distributed version control and forking workflow

12:00 - 12:15: Concepts and what are exercise outcomes
12:15 - 12:45: Exercise
12:45 - 12:55 Break
12:55 - 13:10: Instructors go through excercises. Discussion and answering ques�ons

13:10 - 13:30: How to contribute changes to somebody else’s project and Q&A

Why we teach this lesson - original

In order to collaborate efficiently using Git, it’s essen�al to have a solid understanding of how
remotes work, and how to contribute changes through pull requests or merge requests. The
git-intro lesson teaches par�cipants how to work efficiently with Git when there is only one
developer (more precisely: how to work when there are no remote Git repositories yet in the
picture). This lesson dives into the collabora�ve aspects of Git and focuses on the possible
collabora�ve workflows enabled by web-based repository hos�ng pla�orms like GitHub.

This lesson is meant to directly benefit workshop par�cipants who have prior experience
with Git, enabling them to put collabora�ve workflows involving code review directly into
prac�ce when they return to their normal work.

https://coderefinery.github.io/git-intermediate/remotes/
https://coderefinery.github.io/git-intermediate/centralized/
https://coderefinery.github.io/git-intermediate/centralized/#exercise-preparation
https://coderefinery.github.io/git-intermediate/distributed/
https://coderefinery.github.io/git-intermediate/distributed/#exercise-preparation
https://coderefinery.github.io/git-intermediate/contributing/
https://coderefinery.github.io/git-intro/

For novice Git users (who may have learned a lot in the git-intro lesson) this lesson is
somewhat challenging, but the lesson aims to introduce them to the concepts and give them
confidence to start using these workflows later when they have gained some further
experience in working with Git.

Intended learning outcomes

By the end of this lesson, learners should:

Understand the concept of remotes
Be able to describe the difference between local and remote branches
Be able to describe the difference between centralized and forking workflows
Know how to use pull requests or merge requests to submit changes to another projects
Know how to reference issues in commits or pull/merge requests and how to auto-close
issues
Know how to update a fork
Be able to contribute in code review as submi�er or reviewer

Interesting questions you might get

If par�cipants run git graph they might no�ce origin/HEAD . This has been omi�ed from
the figures to not overload the presenta�on. This pointer represents the default branch of
the remote repository.

Timing

The centralized collabora�on episode is densest and introduces many new concepts, so at
least an hour is required for it.
The forking-workflow exercise repeats familiar concepts (only introduces forking and
distributed workflows), and it takes maybe half the �me of the first episode.
The “How to contribute changes to somebody else’s project” episode can be covered
rela�vely quickly and offers room for discussion if you have �me le�. However, this
should not be skipped as this is perhaps the key learning outcome.

Preparing exercises

Exercise leads typically prepare exercise repositories for the exercise group (although the
material speaks about “maintainer” who can also be one of the learners). Preparing the first
exercise (centralized workflow) will take more �me than preparing the second (forking
workflow). Most prepara�on �me is not the genera�ng part but will go into communica�ng
the URL to the exercise group, communica�ng their usernames, adding them as
collaborators, and wai�ng un�l everybody accepts the GitHub invita�on to join the newly
created exercise repository.

Live stream:

Create the centralized exercises in an organiza�on (not under your username) so that you
can give others admin access to add collaborators. Also this way you can then fork
yourself if needed.
For CR workshops, the exercises were placed under h�ps://github.com/cr-workshop-
exercises. The instructors or team leads need to have owner status in the organiza�on in
order to invite people.
We have created two versions of each a day in advance to signal which one might end up
being discussed on recording/stream:

centralized-workflow-exercise-recorded

centralized-workflow-exercise

forking-workflow-exercise-recorded

forking-workflow-exercise

Protect the default branch of the two centralized-* repositories.
We create a organiza�on team, stream-exercise-participants . The centralized workflow
exercise repos have this team added as a collaborator (not forking - they fork so they
don’t need write access there).
We have collected usernames of people who want to contribute via issues on GitHub.
Make a fi�h repository, access-requests , create a sample access request issue there, and
have learners make a new issue in that repository. The day/morning before the day of the
lesson the instructor or team leader now has to invite the learners to the team. Three
steps: 1. copy the learners GitHub username from the issue 2. go to team member page,
example linked here and invite that username to the team (this means first clicking invite
and then scrolling down to click the “add username to …” bu�on. This sends an email to
that users email that is connected to their GitHub account. 3. In the issue, copy following
text (or similar) to the issue and “close with comment”:

``

Why a fi�h repository? So that learners don’t get emails from all other access requests
once they get added to the team
Example email reques�ng learners to join
Example issue comment

We have added you to the CodeRefinery exercise repository.

What you should do before the exercise starts:

You will get an invitation from GitHub to your email address (that GitHub knows

about). Please accept that invitation so that you can participate in the

collaborative exercise.

To make sure you don't get too many emails during the exercise, don't forget to
"unwatch" both https://github.com/cr-workshop-exercises/centralized-workflow-

exercise and https://github.com/cr-workshop-exercises/centralized-workflow-

exercise-recorded.

To "unwatch", go to the repository and click the "Unwatch" button (top middle of

the screen) and then select "Participating and @mentions".

https://github.com/cr-workshop-exercises
https://github.com/cr-workshop-exercises
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants/members
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants/members
https://coderefinery.github.io/2024-03-12-workshop/communication/#2024-03-12-exercise-preparation-for-learners-without-own-group
https://github.com/cr-workshop-exercises/access-requests/issues/41

Typical pitfalls

Difference between pull and pull requests

The difference between pull and pull requests can be confusing, explain clearly that pull
requests or merge requests are a different mechanism specific to GitHub, GitLab, etc.

Pull requests are from branch to branch, not from commit to branch

The behavior that addi�onal commits to a branch from which a pull request has been created
get appended to the pull request needs to be explained.

Other practical aspects

In in-person workshops par�cipants really have to sit next to someone, so that they can
see the screens. From the beginning.
Emphasize use of git graph a lot, just like in the git-solo lesson.

